scispace - formally typeset
Search or ask a question
Institution

Harvard University

EducationCambridge, Massachusetts, United States
About: Harvard University is a education organization based out in Cambridge, Massachusetts, United States. It is known for research contribution in the topics: Population & Cancer. The organization has 208150 authors who have published 530388 publications receiving 38152182 citations. The organization is also known as: Harvard & University of Harvard.
Topics: Population, Cancer, Health care, Galaxy, Medicine


Papers
More filters
Journal ArticleDOI
01 Feb 2013-Science
TL;DR: Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.
Abstract: Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.

4,596 citations

Journal ArticleDOI
Adam J. Bass1, Vesteinn Thorsson2, Ilya Shmulevich2, Sheila Reynolds2  +254 moreInstitutions (32)
11 Sep 2014-Nature
TL;DR: A comprehensive molecular evaluation of 295 primary gastric adenocarcinomas as part of The Cancer Genome Atlas (TCGA) project is described and a molecular classification dividing gastric cancer into four subtypes is proposed.
Abstract: Gastric cancer was the world’s third leading cause of cancer mortality in 2012, responsible for 723,000 deaths1. The vast majority of gastric cancers are adenocarcinomas, which can be further subdivided into intestinal and diffuse types according to the Lauren classification2. An alternative system, proposed by the World Health Organization, divides gastric cancer into papillary, tubular, mucinous (colloid) and poorly cohesive carcinomas3. These classification systems have little clinical utility, making the development of robust classifiers that can guide patient therapy an urgent priority. The majority of gastric cancers are associated with infectious agents, including the bacterium Helicobacter pylori4 and Epstein–Barr virus (EBV). The distribution of histological subtypes of gastric cancer and the frequencies of H. pylori and EBV associated gastric cancer vary across the globe5. A small minority of gastric cancer cases are associated with germline mutation in E-cadherin (CDH1)6 or mismatch repair genes7 (Lynch syndrome), whereas sporadic mismatch repair-deficient gastric cancers have epigenetic silencing of MLH1 in the context of a CpG island methylator phenotype (CIMP)8. Molecular profiling of gastric cancer has been performed using gene expression or DNA sequencing9–12, but has not led to a clear biologic classification scheme. The goals of this study by The Cancer Genome Atlas (TCGA) were to develop a robust molecular classification of gastric cancer and to identify dysregulated pathways and candidate drivers of distinct classes of gastric cancer.

4,583 citations

Journal ArticleDOI
Shaun Purcell1, Shaun Purcell2, Naomi R. Wray3, Jennifer Stone2, Jennifer Stone1, Peter M. Visscher, Michael Conlon O'Donovan4, Patrick F. Sullivan5, Pamela Sklar1, Pamela Sklar2, Douglas M. Ruderfer, Andrew McQuillin, Derek W. Morris6, Colm O'Dushlaine6, Aiden Corvin6, Peter Holmans4, Stuart MacGregor3, Hugh Gurling, Douglas Blackwood7, Nicholas John Craddock5, Michael Gill6, Christina M. Hultman8, Christina M. Hultman9, George Kirov4, Paul Lichtenstein8, Walter J. Muir7, Michael John Owen4, Carlos N. Pato10, Edward M. Scolnick2, Edward M. Scolnick1, David St Clair, Nigel Williams4, Lyudmila Georgieva4, Ivan Nikolov4, Nadine Norton4, Hywel Williams4, Draga Toncheva, Vihra Milanova, Emma Flordal Thelander8, Patrick Sullivan11, Elaine Kenny6, Emma M. Quinn6, Khalid Choudhury12, Susmita Datta12, Jonathan Pimm12, Srinivasa Thirumalai13, Vinay Puri12, Robert Krasucki12, Jacob Lawrence12, Digby Quested14, Nicholas Bass12, Caroline Crombie15, Gillian Fraser15, Soh Leh Kuan, Nicholas Walker, Kevin A. McGhee7, Ben S. Pickard16, P. Malloy7, Alan W Maclean7, Margaret Van Beck7, Michele T. Pato10, Helena Medeiros10, Frank A. Middleton17, Célia Barreto Carvalho10, Christopher P. Morley17, Ayman H. Fanous, David V. Conti10, James A. Knowles10, Carlos Ferreira, António Macedo18, M. Helena Azevedo18, Andrew Kirby2, Andrew Kirby1, Manuel A. R. Ferreira1, Manuel A. R. Ferreira2, Mark J. Daly2, Mark J. Daly1, Kimberly Chambert2, Finny G Kuruvilla2, Stacey Gabriel2, Kristin G. Ardlie2, Jennifer L. Moran2 
06 Aug 2009-Nature
TL;DR: The extent to which common genetic variation underlies the risk of schizophrenia is shown, using two analytic approaches, and the major histocompatibility complex is implicate, which is shown to involve thousands of common alleles of very small effect.
Abstract: Schizophrenia is a severe mental disorder with a lifetime risk of about 1%, characterized by hallucinations, delusions and cognitive deficits, with heritability estimated at up to 80%(1,2). We performed a genome-wide association study of 3,322 European individuals with schizophrenia and 3,587 controls. Here we show, using two analytic approaches, the extent to which common genetic variation underlies the risk of schizophrenia. First, we implicate the major histocompatibility complex. Second, we provide molecular genetic evidence for a substantial polygenic component to the risk of schizophrenia involving thousands of common alleles of very small effect. We show that this component also contributes to the risk of bipolar disorder, but not to several non-psychiatric diseases.

4,573 citations

Journal ArticleDOI
18 Oct 2007-Nature
TL;DR: The Phase II HapMap is described, which characterizes over 3.1 million human single nucleotide polymorphisms genotyped in 270 individuals from four geographically diverse populations and includes 25–35% of common SNP variation in the populations surveyed, and increased differentiation at non-synonymous, compared to synonymous, SNPs is demonstrated.
Abstract: We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r2 of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r2 of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.

4,565 citations

Journal Article
TL;DR: The authors warn that knowledge management should not be isolated in a functional department like HR or IT, and emphasize that the benefits are greatest when a CEO and other general managers actively choose one of the approaches as a primary strategy.
Abstract: The rise of the computer and the increasing importance of intellectual assets have compelled executives to examine the knowledge underlying their businesses and how it is used. Because knowledge management as a conscious practice is so young, however, executives have lacked models to use as guides. To help fill that gap, the authors recently studied knowledge management practices at management consulting firms, health care providers, and computer manufacturers. They found two very different knowledge management strategies in place. In companies that sell relatively standardized products that fill common needs, knowledge is carefully codified and stored in databases, where it can be accessed and used--over and over again--by anyone in the organization. The authors call this the codification strategy. In companies that provide highly customized solutions to unique problems, knowledge is shared mainly through person-to-person contacts; the chief purpose of computers is to help people communicate. They call this the personalization strategy. A company's choice of knowledge management strategy is not arbitrary--it must be driven by the company's competitive strategy. Emphasizing the wrong approach or trying to pursue both can quickly undermine a business. The authors warn that knowledge management should not be isolated in a functional department like HR or IT. They emphasize that the benefits are greatest--to both the company and its customers--when a CEO and other general managers actively choose one of the approaches as a primary strategy.

4,558 citations


Authors

Showing all 209304 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Eric S. Lander301826525976
Robert Langer2812324326306
Meir J. Stampfer2771414283776
Ronald C. Kessler2741332328983
JoAnn E. Manson2701819258509
Albert Hofman2672530321405
Graham A. Colditz2611542256034
Frank B. Hu2501675253464
Bert Vogelstein247757332094
George M. Whitesides2401739269833
Paul M. Ridker2331242245097
Richard A. Flavell2311328205119
Eugene Braunwald2301711264576
Ralph B. D'Agostino2261287229636
Network Information
Related Institutions (5)
Yale University
220.6K papers, 12.8M citations

98% related

Johns Hopkins University
249.2K papers, 14M citations

98% related

Columbia University
224K papers, 12.8M citations

98% related

University of Pennsylvania
257.6K papers, 14.1M citations

97% related

University of Washington
305.5K papers, 17.7M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023358
20221,907
202130,528
202029,818
201926,011