scispace - formally typeset
Search or ask a question

Showing papers by "Istituto Italiano di Tecnologia published in 2016"


Journal ArticleDOI
TL;DR: The data further characterize the ultrastructural analysis of the KD mouse model, and support recent theories of a dying-back mechanism for neuronal degeneration, which is independent of demyelination.
Abstract: Krabbe disease (KD) is a neurodegenerative disorder caused by the lack of β- galactosylceramidase enzymatic activity and by widespread accumulation of the cytotoxic galactosyl-sphingosine in neuronal, myelinating and endothelial cells. Despite the wide use of Twitcher mice as experimental model for KD, the ultrastructure of this model is partial and mainly addressing peripheral nerves. More details are requested to elucidate the basis of the motor defects, which are the first to appear during KD onset. Here we use transmission electron microscopy (TEM) to focus on the alterations produced by KD in the lower motor system at postnatal day 15 (P15), a nearly asymptomatic stage, and in the juvenile P30 mouse. We find mild effects on motorneuron soma, severe ones on sciatic nerves and very severe effects on nerve terminals and neuromuscular junctions at P30, with peripheral damage being already detectable at P15. Finally, we find that the gastrocnemius muscle undergoes atrophy and structural changes that are independent of denervation at P15. Our data further characterize the ultrastructural analysis of the KD mouse model, and support recent theories of a dying-back mechanism for neuronal degeneration, which is independent of demyelination.

10,233 citations


Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations


Journal ArticleDOI
04 Mar 2016-Science
TL;DR: An electroluminescent material is presented that is capable of large uniaxial stretching and surface area changes while actively emitting light and is combined in a stretchable electronic material suitable for soft robotics.
Abstract: Cephalopods such as octopuses have a combination of a stretchable skin and color-tuning organs to control both posture and color for visual communication and disguise. We present an electroluminescent material that is capable of large uniaxial stretching and surface area changes while actively emitting light. Layers of transparent hydrogel electrodes sandwich a ZnS phosphor-doped dielectric elastomer layer, creating thin rubber sheets that change illuminance and capacitance under deformation. Arrays of individually controllable pixels in thin rubber sheets were fabricated using replica molding and were subjected to stretching, folding, and rolling to demonstrate their use as stretchable displays. These sheets were then integrated into the skin of a soft robot, providing it with dynamic coloration and sensory feedback from external and internal stimuli.

1,008 citations


Journal ArticleDOI
06 Dec 2016
TL;DR: The challenge ahead for soft robotics is to further develop the abilities for robots to grow, evolve, self-heal, develop, and biodegrade, which are the ways that robots can adapt their morphology to the environment.
Abstract: The proliferation of soft robotics research worldwide has brought substantial achievements in terms of principles, models, technologies, techniques, and prototypes of soft robots. Such achievements are reviewed here in terms of the abilities that they provide robots that were not possible before. An analysis of the evolution of this field shows how, after a few pioneering works in the years 2009 to 2012, breakthrough results were obtained by taking seminal technological and scientific challenges related to soft robotics from actuation and sensing to modeling and control. Further progress in soft robotics research has produced achievements that are important in terms of robot abilities-that is, from the viewpoint of what robots can do today thanks to the soft robotics approach. Abilities such as squeezing, stretching, climbing, growing, and morphing would not be possible with an approach based only on rigid links. The challenge ahead for soft robotics is to further develop the abilities for robots to grow, evolve, self-heal, develop, and biodegrade, which are the ways that robots can adapt their morphology to the environment.

831 citations


Journal ArticleDOI
TL;DR: Petrozza and Ball as mentioned in this paper described the state of the art in the understanding of the origin and nature of defects in perovskite-halide light absorbers and their impact on carrier recombination, charge-transport, band alignment, and electrical instability.
Abstract: Solar cells based on perovskite-halide light absorbers have a unique set of characteristics that could help alleviate the global dependence on fossil fuels for energy generation They efficiently convert sunlight into electricity using Earth-abundant raw materials processed from solution at low temperature Thus, they offer potential for cost reductions compared with or in combination with other photovoltaic technologies Nevertheless, to fully exploit the potential of perovskite-halides, several important challenges must be overcome Given the nature of the materials — relatively soft ionic solids — one of these challenges is the understanding and control of their defect structures Currently, such understanding is limited, restricting the power conversion efficiencies of these solar cells from reaching their thermodynamic limit This Review describes the state of the art in the understanding of the origin and nature of defects in perovskite-halides and their impact on carrier recombination, charge-transport, band alignment, and electrical instability, and provides a perspective on how to make further progress Understanding of defect physics in perovskite-halide semiconductors is essential to control the effects of structural and chemical defects on the performance of perovskite solar cells Petrozza and Ball review the current knowledge of defects in these materials

817 citations


Journal ArticleDOI
14 Oct 2016-Science
TL;DR: It is shown that rapid light–induced free-radical polymerization at ambient temperature produces multifunctional fluorinated photopolymer coatings that confer luminescent and easy-cleaning features on the front side of the devices, while concurrently forming a strongly hydrophobic barrier toward environmental moisture on the back contact side.
Abstract: Organometal halide perovskite solar cells have demonstrated high conversion efficiency but poor long-term stability against ultraviolet irradiation and water. We show that rapid light-induced free-radical polymerization at ambient temperature produces multifunctional fluorinated photopolymer coatings that confer luminescent and easy-cleaning features on the front side of the devices, while concurrently forming a strongly hydrophobic barrier toward environmental moisture on the back contact side. The luminescent photopolymers re-emit ultraviolet light in the visible range, boosting perovskite solar cells efficiency to nearly 19% under standard illumination. Coated devices reproducibly retain their full functional performance during prolonged operation, even after a series of severe aging tests carried out for more than 6 months.

716 citations


Journal ArticleDOI
TL;DR: The blue fluorescent CsPbCl3 NPLs represent a new member of the scarcely populated group of blue-emitting colloidal nanocrystals and the exciton dynamics were found to be independent of the extent of 2D confinement in these platelets, and this was supported by band structure calculations.
Abstract: We report a colloidal synthesis approach to CsPbBr3 nanoplatelets (NPLs). The nucleation and growth of the platelets, which takes place at room temperature, is triggered by the injection of acetone in a mixture of precursors that would remain unreactive otherwise. The low growth temperature enables the control of the plate thickness, which can be precisely tuned from 3 to 5 monolayers. The strong two-dimensional confinement of the carriers at such small vertical sizes is responsible for a narrow PL, strong excitonic absorption, and a blue shift of the optical band gap by more than 0.47 eV compared to that of bulk CsPbBr3. We also show that the composition of the NPLs can be varied all the way to CsPbBr3 or CsPbI3 by anion exchange, with preservation of the size and shape of the starting particles. The blue fluorescent CsPbCl3 NPLs represent a new member of the scarcely populated group of blue-emitting colloidal nanocrystals. The exciton dynamics were found to be independent of the extent of 2D confinement...

714 citations


Journal ArticleDOI
TL;DR: The theoretical background of MD and enhanced sampling methods is reviewed, focusing on free-energy perturbation, metadynamics, steered MD, and other methods most consistently used to study drug-target binding.
Abstract: Molecular dynamics (MD) and related methods are close to becoming routine computational tools for drug discovery. Their main advantage is in explicitly treating structural flexibility and entropic effects. This allows a more accurate estimate of the thermodynamics and kinetics associated with drug-target recognition and binding, as better algorithms and hardware architectures increase their use. Here, we review the theoretical background of MD and enhanced sampling methods, focusing on free-energy perturbation, metadynamics, steered MD, and other methods most consistently used to study drug-target binding. We discuss unbiased MD simulations that nowadays allow the observation of unsupervised ligand-target binding, assessing how these approaches help optimizing target affinity and drug residence time toward improved drug efficacy. Further issues discussed include allosteric modulation and the role of water molecules in ligand binding and optimization. We conclude by calling for more prospective studies to attest to these methods' utility in discovering novel drug candidates.

693 citations


Journal ArticleDOI
20 Jan 2016-ACS Nano
TL;DR: It is reported that iron oxide nanoparticles have the dual capacity to act as both magnetic and photothermal agents, and single-mode treatments (magnetic or laser hyperthermia) reduced tumor growth, while DUAL-mode treatment resulted in complete tumor regression.
Abstract: The pursuit of innovative, multifunctional, more efficient, and safer treatments is a major challenge in preclinical nanoparticle-mediated thermotherapeutic research. Here, we report that iron oxide nanoparticles have the dual capacity to act as both magnetic and photothermal agents. We further explore every key aspect of this magnetophotothermal approach, choosing iron oxide nanocubes for their high efficiency for the magnetic hyperthermia modality itself. In aqueous suspension, the nanocubes' exposure to both: an alternating magnetic field and near-infrared laser irradiation (808 nm), defined as the DUAL-mode, amplifies the heating effect 2- to 5-fold by comparison with magnetic stimulation alone, yielding unprecedented heating powers (specific loss powers) up to 5000 W/g. In cancer cells, the laser excitation restores the optimal efficiency of magnetic hyperthermia, otherwise inhibited by intracellular confinement, resulting in a remarkable heating efficiency in the DUAL-mode (up to 15-fold amplification), with respect to the magnetophotothermal mode. As a consequence, the dual action yielded complete apoptosis-mediated cell death. In solid tumors in vivo, single-mode treatments (magnetic or laser hyperthermia) reduced tumor growth, while DUAL-mode treatment resulted in complete tumor regression, mediated by heat-induced tumoral cell apoptosis and massive denaturation of the collagen fibers, and a long-lasting thermal efficiency over repeated treatments.

606 citations


Journal ArticleDOI
04 Mar 2016-Science
TL;DR: Graphene hosts a unique electron system in which electron-phonon scattering is extremely weak but electron-electron collisions are sufficiently frequent to provide local equilibrium above the temperature of liquid nitrogen, under which electrons can behave as a viscous liquid and exhibit hydrodynamic phenomena similar to classical liquids.
Abstract: Graphene hosts a unique electron system in which electron-phonon scattering is extremely weak but electron-electron collisions are sufficiently frequent to provide local equilibrium above the temperature of liquid nitrogen. Under these conditions, electrons can behave as a viscous liquid and exhibit hydrodynamic phenomena similar to classical liquids. Here we report strong evidence for this transport regime. We found that doped graphene exhibits an anomalous (negative) voltage drop near current-injection contacts, which is attributed to the formation of submicrometer-size whirlpools in the electron flow. The viscosity of graphene’s electron liquid is found to be ~0.1 square meters per second, an order of magnitude higher than that of honey, in agreement with many-body theory. Our work demonstrates the possibility of studying electron hydrodynamics using high-quality graphene.

595 citations


Journal ArticleDOI
TL;DR: This review provides an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange and gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions as they are currently understood.
Abstract: Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field.

Journal ArticleDOI
TL;DR: In this article, temperature resolved UV-vis absorption and spectral photocurrent response measurements of MAPbI3 thin films and solar cells, together with ab initio simulations, were used to investigate the changes in material properties occurring across the tetragonal to cubic phase transition.
Abstract: We report temperature resolved UV-vis absorption and spectral photocurrent response measurements of MAPbI3 thin films and solar cells, together with ab initio simulations, to investigate the changes in material properties occurring across the tetragonal to cubic phase transition. We find that the MAPbI3 band-gap does not abruptly change when exceeding the tetragonal to cubic transition temperature, but it rather monotonically blue-shifts following the same temperature evolution observed within the tetragonal phase. Car–Parrinello molecular dynamics simulations demonstrate that the high temperature phase corresponds on average to the expected symmetric cubic structure assigned from XRD measurements, but that the system strongly deviates from such a structure in the sub-picosecond time scale. Thus, on the time scale of electronic transitions, the material seldom experiences a cubic environment, rather an increasingly distorted tetragonal one. This result explains the absence of dramatic changes in the optical of MAPbI3 across the explored temperature range of 270–420 K, which could have important consequences for the practical uptake of perovskite solar cells.

Journal ArticleDOI
TL;DR: The nontemplated colloidal synthesis of single crystal CsPbBr3 perovskite nanosheets with lateral sizes up to a few micrometers and with thickness of just a few unit cells is reported in the strong quantum confinement regime.
Abstract: We report the nontemplated colloidal synthesis of single crystal CsPbBr3 perovskite nanosheets with lateral sizes up to a few micrometers and with thickness of just a few unit cells (i.e., below 5 nm), hence in the strong quantum confinement regime, by introducing short ligands (octanoic acid and octylamine) in the synthesis together with longer ones (oleic acid and oleylamine). The lateral size is tunable by varying the ratio of shorter ligands over longer ligands, while the thickness is mainly unaffected by this parameter and stays practically constant at 3 nm in all the syntheses conducted at short-to-long ligands volumetric ratio below 0.67. Beyond this ratio, control over the thickness is lost and a multimodal thickness distribution is observed.

Proceedings ArticleDOI
01 Jun 2016
TL;DR: This work presents an multi-task dictionary learning method which is able to learn a dataset-shared but target-data-biased representation, and demonstrates that the method significantly outperforms the state-of-the-art.
Abstract: Most existing person re-identification (Re-ID) approaches follow a supervised learning framework, in which a large number of labelled matching pairs are required for training. This severely limits their scalability in realworld applications. To overcome this limitation, we develop a novel cross-dataset transfer learning approach to learn a discriminative representation. It is unsupervised in the sense that the target dataset is completely unlabelled. Specifically, we present an multi-task dictionary learning method which is able to learn a dataset-shared but targetdata-biased representation. Experimental results on five benchmark datasets demonstrate that the method significantly outperforms the state-of-the-art.

Journal ArticleDOI
TL;DR: Progress on fabrication, design and understanding of mechanically durable superhydrophobic surfaces is summarized, including an overview of recently published diagnostic techniques for probing and demonstrating tribo-mechanical durability against wear and abrasion as well as other effects such as solid/liquid spray or jet impact and underwater resistance.

Journal ArticleDOI
TL;DR: The exfoliation strategies of graphite and other layered crystals are reviewed, along with the advances in the sorting of lateral size and thickness of the exfoliated sheets together with the formulation of functional inks and the current development of printing/coating processes of interest for the realization of 2D-crystal-based devices.
Abstract: The possibility to produce and process graphene, related 2D crystals, and heterostructures in the liquid phase makes them promising materials for an ever-growing class of applications as composite materials, sensors, in flexible optoelectronics, and energy storage and conversion. In particular, the ability to formulate functional inks with on-demand rheological and morphological properties, i.e., lateral size and thickness of the dispersed 2D crystals, is a step forward toward the development of industrial-scale, reliable, inexpensive printing/coating processes, a boost for the full exploitation of such nanomaterials. Here, the exfoliation strategies of graphite and other layered crystals are reviewed, along with the advances in the sorting of lateral size and thickness of the exfoliated sheets together with the formulation of functional inks and the current development of printing/coating processes of interest for the realization of 2D-crystal-based devices.

Journal ArticleDOI
TL;DR: In this article, a combination of transient and steady state photocurrent and absorption spectroscopy was used to show that CH3NH3PbI3 films exhibit a broad distribution of electron traps.
Abstract: One of the greatest attributes of metal halide perovskite solar cells is their surprisingly low loss in potential between bandgap and open-circuit voltage, despite the fact that they suffer from a non-negligible density of sub gap defect states. Here, we use a combination of transient and steady state photocurrent and absorption spectroscopy to show that CH3NH3PbI3 films exhibit a broad distribution of electron traps. We show that the trapped electrons recombine with free holes unexpectedly slowly, on microsecond time scales, relaxing the limit on obtainable open-circuit voltage (VOC) under trap-mediated recombination conditions. We find that the observed VOCs in such perovskite solar cells can only be rationalized by considering the slow trap mediated recombination mechanism identified in this work. Our results suggest that existing processing routes may be good enough to enable open circuit voltages approaching 1.3 V in ideal devices with perfect contacts.

Journal ArticleDOI
26 Jan 2016-ACS Nano
TL;DR: Resistance of the films to degradation caused by exposure to air and moisture, which represents one of the major drawbacks for the integration of these materials in devices, and Stability of the film in water and biological buffer, which can open interesting perspectives for applications of halide perovskite nanocrystals in aqueous environments.
Abstract: Films of colloidal CsPbX3 (X = I, Br or Cl) nanocrystals, prepared by solution drop-casting or spin-coating on a silicon substrate, were exposed to a low flux of X-rays from an X-ray photoelectron spectrometer source, causing intermolecular C═C bonding of the organic ligands that coat the surface of the nanocrystals. This transformation of the ligand shell resulted in a greater stability of the film, which translated into the following features: (i) Insolubility of the exposed regions in organic solvents which caused instead complete dissolution of the unexposed regions. This enabled the fabrication of stable and strongly fluorescent patterns over millimeter scale areas. (ii) Inhibition of the irradiated regions toward halide anion exchange reactions, when the films were exposed either to halide anions in solution or to hydrohalic vapors. This feature was exploited to create patterned regions of different CsPbIxBryClz compositions, starting from a film with homogeneous CsPbX3 composition. (iii) Resistance...

Journal ArticleDOI
TL;DR: In this article, a guide to the design process from the analysis of the desired tasks identifying the relevant attributes and their influence on the selection of different components such as motors, sensors, and springs is presented.
Abstract: Variable stiffness actuators (VSAs) are complex mechatronic devices that are developed to build passively compliant, robust, and dexterous robots. Numerous different hardware designs have been developed in the past two decades to address various demands on their functionality. This review paper gives a guide to the design process from the analysis of the desired tasks identifying the relevant attributes and their influence on the selection of different components such as motors, sensors, and springs. The influence on the performance of different principles to generate the passive compliance and the variation of the stiffness are investigated. Furthermore, the design contradictions during the engineering process are explained in order to find the best suiting solution for the given purpose. With this in mind, the topics of output power, potential energy capacity, stiffness range, efficiency, and accuracy are discussed. Finally, the dependencies of control, models, sensor setup, and sensor quality are addressed.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a model in which light irradiation promotes the annihilation of VI+/Ii− Frenkel pairs, which is relatively abundant in polycrystalline MAPbI3.
Abstract: In spite of the unprecedented advances of organohalide lead perovskites in optoelectronic devices, many of the characteristics of this class of materials remain poorly understood. Several experimental hints point to defect migration as a plausible mechanism underlying such anomalous properties. Here we present an experimental and theoretical investigation combining measurements of PL rise dynamics at varying temperatures with first principles computational modeling of defect migration under light irradiation. We propose a model in which light irradiation promotes the annihilation of VI+/Ii− Frenkel pairs, which we show to be relatively abundant in polycrystalline MAPbI3. This partly restores a non-defective crystalline environment and eliminates the trapping centers associated with such defect pairs. The PL rise time dynamics at varying temperature provide an activation energy consistent with that calculated for migration of iodine defects, supporting the proposed model. We further illustrate a synergistic effect of ion/defect migration and lattice dynamics, with local reorientation of the methylammonium cations assisting the migration of charged defects. Our results provide the interpretative basis for further investigating the unusual light-induced modifications characterizing organohalide perovskites.

Journal ArticleDOI
TL;DR: It is found that even in globally centrosymmetric structures the dynamics of the coupled inorganic-organic degrees of freedom give rise to a spatially local Rashba effect which fluctuates on the subpicosecond time scale typical of the methylammonium cation dynamics.
Abstract: The presence of a Rashba band-splitting mechanism mediated by spin–orbit coupling and breaking of inversion symmetry has been suggested as a possible cause for the reduced recombination rates observed in organohalide perovskites. Here, we investigate the interplay of electronic and nuclear degrees of freedom in defining the Rashba splitting in realistic MAPbI3 models. Our simulations disclose a “dynamical Rashba effect”, allowing for a quantification of its magnitude under thermal conditions. We find that even in globally centrosymmetric structures the dynamics of the coupled inorganic–organic degrees of freedom give rise to a spatially local Rashba effect which fluctuates on the subpicosecond time scale typical of the methylammonium cation dynamics. This effect is progressively quenched in globally centrosymmetric structures, likely representing the MAPbI3 perovskite at room temperature, on increasing the probed spatial scale up to 32 MAPbI3 units (∼3 nm size) because of the incoherent nuclear thermal mo...

Journal ArticleDOI
TL;DR: In this paper, the present status of worldwide research on these electrolyte materials together with a critical discussion of their transport properties and compatibility with metallic lithium, hoping to provide some general guidelines for the development of innovative and safe lithium metal batteries.
Abstract: The scientific community is continuously committed to the search for new high energy electrochemical storage devices. In this regard, lithium metal batteries, due to their very high electrochemical energy storage capacity, appear to be a highly appealing choice. Unfortunately, the use of lithium metal as the anode may lead to some safety hazards due to its uneven deposition upon charging, resulting in dendrite growth and eventual shorting of the battery. This issue may be successfully addressed by using intrinsically safer electrolytes capable of establishing a physical barrier at the electrode interface. The most promising candidates are solid electrolytes, either polymeric or inorganic. The main purpose of this review is to describe the present status of worldwide research on these electrolyte materials together with a critical discussion of their transport properties and compatibility with metallic lithium, hoping to provide some general guidelines for the development of innovative and safe lithium metal batteries.

Journal ArticleDOI
TL;DR: This work proposes a framework for a user to teach a robot collaborative skills from demonstrations, and presents an approach that combines probabilistic learning, dynamical systems, and stiffness estimation to encode the robot behavior along the task.
Abstract: Robots are becoming safe and smart enough to work alongside people not only on manufacturing production lines, but also in spaces such as houses, museums, or hospitals. This can be significantly exploited in situations in which a human needs the help of another person to perform a task, because a robot may take the role of the helper. In this sense, a human and the robotic assistant may cooperatively carry out a variety of tasks, therefore requiring the robot to communicate with the person, understand his/her needs, and behave accordingly. To achieve this, we propose a framework for a user to teach a robot collaborative skills from demonstrations. We mainly focus on tasks involving physical contact with the user, in which not only position, but also force sensing and compliance become highly relevant. Specifically, we present an approach that combines probabilistic learning, dynamical systems, and stiffness estimation to encode the robot behavior along the task. Our method allows a robot to learn not only trajectory following skills, but also impedance behaviors. To show the functionality and flexibility of our approach, two different testbeds are used: a transportation task and a collaborative table assembly.

Journal ArticleDOI
TL;DR: The role, mechanism of action, and biological function of the seven sirtuins, as well as their inhibitors and activators are reviewed.
Abstract: Sirtuins are NAD+-dependent histone deacetylases regulating important metabolic pathways in prokaryotes and eukaryotes and are involved in many biological processes such as cell survival, senescence, proliferation, apoptosis, DNA repair, cell metabolism, and caloric restriction. The seven members of this family of enzymes are considered potential targets for the treatment of human pathologies including neurodegenerative diseases, cardiovascular diseases, and cancer. Furthermore, recent interest focusing on sirtuin modulators as epigenetic players in the regulation of fundamental biological pathways has prompted increased efforts to discover new small molecules able to modify sirtuin activity. Here, we review the role, mechanism of action, and biological function of the seven sirtuins, as well as their inhibitors and activators.

Journal ArticleDOI
TL;DR: The colloidal synthesis of strongly fluorescent CsPbBr3 perovskite nanowires with rectangular section and with tuneable width with high photoluminescence quantum yield promoted the formation of monodisperse, few unit cell thick NWs that were free from byproducts.
Abstract: We report the colloidal synthesis of strongly fluorescent CsPbBr3 perovskite nanowires (NWs) with rectangular section and with tuneable width, from 20 nm (exhibiting no quantum confinement, hence emitting in the green) down to around 3 nm (in the strong quan-tum-confinement regime, emitting in the blue), by introducing in the synthesis a short acid (octanoic acid or hexanoic acid) together with alkyl amines (octylamine and oleylamine). Temperatures below 70 °C promoted the formation of monodisperse, few unit cell thick NWs that were free from byproducts. The photoluminescence quantum yield of the NW samples went from 12% for non-confined NWs emitting at 524 nm to a maximum of 77% for the 5 nm diameter NWs emitting at 497 nm, down to 30% for the thinnest NWs (diameter ~ 3nm), in the latter sample most likely due to aggregation occurring in solution.

Journal ArticleDOI
TL;DR: Tactile sensors provide robots with the ability to interact with humans and the environment with great accuracy, yet technical challenges remain for electronic-skin systems to reach human-level performance.
Abstract: Tactile sensors provide robots with the ability to interact with humans and the environment with great accuracy, yet technical challenges remain for electronic-skin systems to reach human-level performance.

Journal ArticleDOI
TL;DR: Combining the mutant p53-inactivating agent APR-246 (PRIMA-1MET) with the proteasome inhibitor carfilzomib is effective in overcoming chemoresistance in triple-negative breast cancer cells, creating a therapeutic opportunity for treatment of solid tumours and metastasis with mutant p53.
Abstract: In cancer, the tumour suppressor gene TP53 undergoes frequent missense mutations that endow mutant p53 proteins with oncogenic properties. Until now, a universal mutant p53 gain-of-function program has not been defined. By means of multi-omics: proteome, DNA interactome (chromatin immunoprecipitation followed by sequencing) and transcriptome (RNA sequencing/microarray) analyses, we identified the proteasome machinery as a common target of p53 missense mutants. The mutant p53–proteasome axis globally affects protein homeostasis, inhibiting multiple tumour-suppressive pathways, including the anti-oncogenic KSRP–microRNA pathway. In cancer cells, p53 missense mutants cooperate with Nrf2 (NFE2L2) to activate proteasome gene transcription, resulting in resistance to the proteasome inhibitor carfilzomib. Combining the mutant p53-inactivating agent APR-246 (PRIMA-1MET) with the proteasome inhibitor carfilzomib is effective in overcoming chemoresistance in triple-negative breast cancer cells, creating a therapeutic opportunity for treatment of solid tumours and metastasis with mutant p53. Walerych et al. show that p53 missense mutants upregulate the proteasome and increase breast cancer cell resistance to proteasome inhibitors. Combined inhibition of p53 mutants and the proteasome leads to increased therapeutic efficacy.

Journal ArticleDOI
TL;DR: An overview of neuroscientific bases of hand synergies is provided and how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics are introduced.

Journal ArticleDOI
TL;DR: A general taxonomy, inspired by the more widespread video surveillance field, is proposed to systematically describe the methods covering background subtraction, event classification, object tracking, and situation analysis, highlighting the target applications of each described method and providing the reader with a systematic and schematic view.
Abstract: Despite surveillance systems becoming increasingly ubiquitous in our living environment, automated surveillance, currently based on video sensory modality and machine intelligence, lacks most of the time the robustness and reliability required in several real applications. To tackle this issue, audio sensory devices have been incorporated, both alone or in combination with video, giving birth in the past decade, to a considerable amount of research. In this article, audio-based automated surveillance methods are organized into a comprehensive survey: A general taxonomy, inspired by the more widespread video surveillance field, is proposed to systematically describe the methods covering background subtraction, event classification, object tracking, and situation analysis. For each of these tasks, all the significant works are reviewed, detailing their pros and cons and the context for which they have been proposed. Moreover, a specific section is devoted to audio features, discussing their expressiveness and their employment in the above-described tasks. Differing from other surveys on audio processing and analysis, the present one is specifically targeted to automated surveillance, highlighting the target applications of each described method and providing the reader with a systematic and schematic view useful for retrieving the most suited algorithms for each specific requirement.

Journal ArticleDOI
TL;DR: In this paper, the authors provide a comprehensive review on conversion/alloying materials' class and discuss two possible approaches to realize a combined conversion and alloying mechanism in a single compound, starting either from pure conversion or pure alloying materials.
Abstract: The essential need for new lithium-ion battery materials providing higher energy and power densities has triggered an exceptional increase in scientific and industrial research efforts in recent years. Regarding the anode side, the two major research directions to achieve improved energy densities have, so far, focused on materials which can host lithium either by alloying or by a conversion mechanism. Very recently, however, a new class of potential next generation anodes is gaining continuously increasing attention: conversion/alloying materials. Herein, we provide for the first time a comprehensive review on this new materials' class. Initially, we discuss the two possible approaches to realize a combined conversion and alloying mechanism in a single compound, starting either from pure conversion or pure alloying materials. Based on this overview we subsequently highlight the fundamental insights and their potential advantages, which shall provide scientists with some general considerations and principles for the development of new, further enhanced conversion/alloying materials.