scispace - formally typeset
Search or ask a question
Institution

Jožef Stefan Institute

FacilityLjubljana, Slovenia
About: Jožef Stefan Institute is a facility organization based out in Ljubljana, Slovenia. It is known for research contribution in the topics: Liquid crystal & Dielectric. The organization has 3828 authors who have published 12614 publications receiving 291025 citations.


Papers
More filters
Journal ArticleDOI
J. Abraham1, P. Abreu2, Marco Aglietta3, Marco Aglietta4  +560 moreInstitutions (66)
TL;DR: The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays.
Abstract: The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidate showers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3 x 10(18) eV, for all zenith angles between 0 degrees and 60 degrees, independently of the position of the impact point and of the mass of the primary particle. In these range of energies and angles, the exposure of the surface array can be determined purely on the basis of the geometrical acceptance. (C) 2009 Elsevier B.V. All rights reserved.

215 citations

Journal ArticleDOI
TL;DR: A new implementation of density functional theory for periodic systems in a basis of local Gaussian functions, including a thorough discussion of the various algorithms, is described.

215 citations

Journal ArticleDOI
01 Oct 2008-Small
TL;DR: A new universal method for the synthesis of transition metal oxide nanowires and nanobelts by direct plasma oxidation of bulk materials is discovered and has been successfully applied for the rapid synthesis of high-density niobium oxide Nanowires.
Abstract: One-dimensional a-Fe2O3 is a promising nanomaterial for advanced applications in catalysis and water splitting, environmental protection, sensors, dye solar cells, magnetic storage media, bioprocessing, and controlled drug delivery and detection, especially as carriers of antigens for prion detection and PCR manipulation. a-Fe2O3 nanowires have been successfully synthesized by various methods based on templates, hydrothermal conditions, sol–gel-mediated reactions, solvothermal conditions, gas decomposition, direct thermal oxidation (in a gas atmosphere of CO2, SO2, O2, and NO2), [7] chemical vapor deposition (CVD), and plasmaenhanced chemical vapor deposition (PECVD). The methods based on direct thermal oxidation, gas decomposition, and CVD reported to date require long synthesis times and high temperatures and therefore limit the efficiency of oxide nanowire synthesis. The application and commercialization of nanowires or nanobelts requires simple synthetic methods that can be scaled for both large areas and large quantities. Recently, we discovered a new universal method for the synthesis of transition metal oxide nanowires and nanobelts by direct plasma oxidation of bulk materials. It has been successfully applied for the rapid synthesis of high-density niobium oxide nanowires. In this process, there is no

214 citations

Journal ArticleDOI
TL;DR: In this article, the temperature dependence of the Edwards-Anderson order parameter and local polarization distribution function in a PMN single crystal via 2D NMR was determined in a single crystal.
Abstract: The temperature dependence of the Edwards-Anderson order parameter ${q}_{\mathrm{EA}}$ and the local polarization distribution function $W(\stackrel{\ensuremath{\rightarrow}}{p})$ have been determined in a PMN single crystal via 2D ${}^{93}\mathrm{Nb}$ NMR. A glasslike freezing of reorientable polar clusters occurs in the temperature range of the diffuse relaxor transition, whereas the NMR spectra corresponding to pinned nanodomains do not change with temperature. The obtained form of $W(\stackrel{\ensuremath{\rightarrow}}{p})$ as well as the temperature dependence of ${q}_{\mathrm{EA}}$ and the nonlinear dielectric susceptibility can be well described by a newly proposed spherical random bond--random field model of relaxor ferroelectrics.

214 citations

Journal ArticleDOI
TL;DR: Both keratinases of Paecilomyces marquandii and Doratomyces microsporus possess broad cleavage specificity with a preference for aromatic and nonpolar amino acid residues at the P-1 position, and were significantly more active on keratin than subtilisin, trypsin, elastase, chymotrypsIn, or collagenase.
Abstract: Based on previous screening for keratinolytic nonpathogenic fungi, Paecilomyces marquandii and Doratomyces microsporus were selected for production of potent keratinases. The enzymes were purified and their main biochemical characteristics were determined (molecular masses, optimal temperature and pH for keratinolytic activity, N-terminal amino acid sequences). Studies of substrate specificity revealed that skin constituents, such as the stratum corneum, and appendages such as nail but not hair, feather, and wool were efficiently hydrolyzed by the P. marquandii keratinase and about 40% less by the D. microsporus keratinase. Hydrolysis of keratin could be increased by the presence of reducing agents. The catalytic properties of the keratinases were studied and compared to those of some known commercial proteases. The profile of the oxidized insulin B-chain digestion revealed that both keratinases, like proteinase K but not subtilisin, trypsin, or elastase, possess broad cleavage specificity with a preference for aromatic and nonpolar amino acid residues at the P-1 position. Kinetic studies were performed on a synthetic substrate, succinyl-Ala-Ala-Pro-Phe-p-nitroanilide. The keratinase of P. marquandii exhibited the lowest Km among microbial keratinases reported in the literature, and its catalytic efficiency was high in comparison to that of D. microsporus keratinase and proteinase K. All three keratinolytic enzymes, the keratinases of P. marquandii and D. microsporus as well as proteinase K, were significantly more active on keratin than subtilisin, trypsin, elastase, chymotrypsin, or collagenase.

214 citations


Authors

Showing all 3879 results

NameH-indexPapersCitations
Vladimir Cindro129115782000
Igor Mandić128106579498
Jure Leskovec12747389014
Matej Orešič8235226830
P. Križan7874926408
Jose Miguel Miranda7633618080
Vito Turk7427123205
Andrii Tykhonov7327024864
Masashi Yokoyama7331018817
Kostya Ostrikov7276321442
M. Starič7153019136
Boris Turk6723127006
Bostjan Kobe6627917592
Jure Zupan6122812054
Mario Sannino6028117144
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

92% related

National Research Council
76K papers, 2.4M citations

91% related

University of Science and Technology of China
101K papers, 2.4M citations

91% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202331
202268
2021755
2020770
2019653
2018576