scispace - formally typeset
Search or ask a question
Institution

National University of Defense Technology

EducationChangsha, China
About: National University of Defense Technology is a education organization based out in Changsha, China. It is known for research contribution in the topics: Computer science & Radar. The organization has 39430 authors who have published 40181 publications receiving 358979 citations. The organization is also known as: Guófáng Kēxuéjìshù Dàxué & NUDT.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel task-scheduling framework for security sensitive workflows with three novel features, named SOLID, incorporating two important phases: task scheduling with selectively duplicating predecessor tasks to idle time slots on resources; and intermediate data encrypting by effectively exploiting tasks’ laxity time.
Abstract: With the wide deployment of cloud computing in many business enterprises as well as science and engineering domains, high quality security services are increasingly critical for processing workflow applications with sensitive intermediate data. Unfortunately, most existing worklfow scheduling approaches disregard the security requirements of the intermediate data produced by workflows, and overlook the performance impact of encryption time of intermediate data on the start of subsequent workflow tasks. Furthermore, the idle time slots on resources, resulting from data dependencies among workflow tasks, have not been adequately exploited to mitigate the impact of data encryption time on workflows’ makespans and monetary cost. To address these issues, this paper presents a novel task-scheduling framework for security sensitive workflows with three novel features. First, we provide comprehensive theoretical analyses on how selectively duplicating a task’s predecessor tasks is helpful for preventing both the data transmission time and encryption time from delaying task’s start time. Then, we define workflow tasks’ latest finish time, and prove that tasks can be completed before tasks’ latest finish time by using cheapest resources to reduce monetary cost without delaying tasks’ successors’ start time and workflows’ makespans. Based on these analyses, we devise a novel s cheduling appr o ach with se l ect i ve tasks d uplication, named SOLID , incorporating two important phases: 1) task scheduling with selectively duplicating predecessor tasks to idle time slots on resources; and 2) intermediate data encrypting by effectively exploiting tasks’ laxity time. We evaluate our solution approach through rigorous performance evaluation study using both randomly generated workflows and some real-world workflow traces. Our results show that the proposed SOLID approach prevails over existing algorithms in terms of makespan, monetary costs and resource efficiency.

93 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the capability of accurate time transfer using optical fibres over long distances utilizing a dark fibre and hardware which is usually employed in two-way satellite time and frequency transfer (TWSTFT).
Abstract: We demonstrate the capability of accurate time transfer using optical fibres over long distances utilizing a dark fibre and hardware which is usually employed in two-way satellite time and frequency transfer (TWSTFT). Our time transfer through optical fibre (TTTOF) system is a variant of the standard TWSTFT by employing an optical fibre in the transmission path instead of free-space transmission of signals between two ground stations through geostationary satellites. As we use a dark fibre there are practically no limitations to the bandwidth of the transmitted signals so that we can use the highest chip rate of the binary phase-shift modulation available from the commercial equipment. This leads to an enhanced precision compared with satellite time transfer where the occupied bandwidth is limited for cost reasons. The TTTOF system has been characterized and calibrated in a common-clock experiment at PTB, and the combined calibration uncertainty is estimated as 74 ps. In a second step the remote part of the system was operated at Leibniz Universitat Hannover, Institut fur Quantenoptik (IQ) separated by 73 km from PTB in Braunschweig. In parallel, a GPS time transfer link between Braunschweig and Hannover was established, and both links connected a passive hydrogen maser at IQ with the reference time scale UTC(PTB) maintained in PTB. The results obtained with both links agree within the 1-σ uncertainty of the GPS link results, which is estimated as 0.72 ns. The fibre link exhibits a nearly ten-fold improved stability compared with the GPS link, and assessment of its performance has been limited by the properties of the passive maser.

93 citations

Journal ArticleDOI
TL;DR: It is proven that placing an obstacle in panic situations does not reduce or absorb the pressure in the region of exit, on the contrary, promotes the pressure to a much higher level, hence the physical mechanism behind the evacuation efficiency enhancement is a significant reduction of high density region by effective separation in space which finally causes the increasing of escape speed and evacuation outflow.
Abstract: To improve the pedestrian outflow in panic situations by suitably placing an obstacle in front of the exit, it is vital to understand the physical mechanism behind the evacuation efficiency enhancement. In this paper, a robust differential evolution is firstly employed to optimize the geometrical parameters of different shaped obstacles in order to achieve an optimal evacuation efficiency. Moreover, it is found that all the geometrical parameters of obstacles could markedly influence the evacuation efficiency of pedestrians, and the best way for achieving an optimal pedestrian outflow is to slightly shift the obstacle from the center of the exit which is consistent with findings of extant literature. Most importantly, by analyzing the profiles of density, velocity and specific flow, as well as the spatial distribution of crowd pressure, we have proven that placing an obstacle in panic situations does not reduce or absorb the pressure in the region of exit, on the contrary, promotes the pressure to a much higher level, hence the physical mechanism behind the evacuation efficiency enhancement is not a pressure decrease in the region of exit, but a significant reduction of high density region by effective separation in space which finally causes the increasing of escape speed and evacuation outflow. Finally, it is clearly demonstrated that the panel-like obstacle is considerably more robust and stable than the pillar-like obstacle to guarantee the enhancement of evacuation efficiency under different initial pedestrian distributions, different initial crowd densities as well as different desired velocities.

92 citations

Journal ArticleDOI
TL;DR: In this paper, a Lyapunov functional approach is developed to establish the existence of flocking solutions for the proposed delayed Cucker-Smale model, and an analytic formula is given to calculate the asymptotic flocking velocity in terms of model parameters and the variation of the position during the initial time interval.

92 citations

Journal ArticleDOI
TL;DR: It is found that their blue emission is highly dependent on whether the environment contains polar groups or not, and the interaction between polar groups in environment and C=O bonds in CDs is responsible for the environment-dependent photo emission.
Abstract: Fluorescent carbon dots (CDs) have received great research interest in recent years, with applications in areas such as bio-imaging and chemical sensing. However, solid state photoluminescence of CDs and its related applications (e.g. optoelectronics) is a less explored territory. Here, we have systematically studied the photo emission of CDs in solid state. We found that their blue emission is highly dependent on whether the environment contains polar groups or not. Mechanism studies show that the blue emission of CDs may come from their CO bonds conjugated with aromatic carbons, and the interaction between polar groups in environment and CO bonds in CDs is responsible for the environment-dependent photo emission. Our conclusion here should assist the development of CDs' solid state applications.

92 citations


Authors

Showing all 39659 results

NameH-indexPapersCitations
Rui Zhang1512625107917
Jian Li133286387131
Chi Lin1251313102710
Wei Xu103149249624
Lei Liu98204151163
Xiang Li97147242301
Chang Liu97109939573
Jian Huang97118940362
Tao Wang97272055280
Wei Liu96153842459
Jian Chen96171852917
Wei Wang95354459660
Peng Li95154845198
Jianhong Wu9372636427
Jianhua Zhang9241528085
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

94% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

University of Science and Technology of China
101K papers, 2.4M citations

90% related

City University of Hong Kong
60.1K papers, 1.7M citations

89% related

Dalian University of Technology
71.9K papers, 1.1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202397
2022469
20212,986
20203,468
20193,695