scispace - formally typeset
Search or ask a question
Institution

Polytechnic University of Milan

EducationMilan, Italy
About: Polytechnic University of Milan is a education organization based out in Milan, Italy. It is known for research contribution in the topics: Computer science & Finite element method. The organization has 18231 authors who have published 58416 publications receiving 1229711 citations. The organization is also known as: PoliMi & L-NESS.


Papers
More filters
Journal ArticleDOI
TL;DR: The observation of a photoinduced absorption band strictly correlated to the photobleaching of the EX1 transition supports the excitonic model for primary excitations in SWNTs.
Abstract: We study exciton (EX) dynamics in single-walled carbon nanotubes (SWNTs) included in polymethylmethacrylate by two-color pump-probe experiments with unprecedented temporal resolution. In the semiconducting SWNTs, we resolve the intersubband energy relaxation from the EX2 to the EX1 transition and find time constants of about 40 fs. The observation of a photoinduced absorption band strictly correlated to the photobleaching of the EX1 transition supports the excitonic model for primary excitations in SWNTs. We also detect in the time domain coherent oscillations due to the radial breathing modes at $\ensuremath{\approx}250\text{ }\text{ }{\mathrm{cm}}^{\ensuremath{-}1}$.

184 citations

Journal ArticleDOI
TL;DR: A series of Steered Molecular Dynamics simulations in explicit solvent is used to elucidate the influence of the pulling rate on the Young's modulus of individual tropocollagen molecules, and enables for the first time to predict the elastic properties of a single tropocollsagen molecule at physiologically and experimentally relevant pulling rates, directly from atomistic-level calculations.
Abstract: Collagen is an important structural protein in vertebrates and is responsible for the integrity of many tissues like bone, teeth, cartilage and tendon. The mechanical properties of these tissues are primarily determined by their hierarchical arrangement and the role of the collagen matrix in their structures. Here we report a series of Steered Molecular Dynamics (SMD) simulations in explicit solvent, used to elucidate the influence of the pulling rate on the Young's modulus of individual tropocollagen molecules. We stretch a collagen peptide model sequence [(Gly-Pro-Hyp)(10)](3) with pulling rates ranging from 0.01 to 100 m/s, reaching much smaller deformation rates than reported in earlier SMD studies. Our results clearly demonstrate a strong influence of the loading velocity on the observed mechanical properties. Most notably, we find that Young's modulus converges to a constant value of approximately 4 GPa tangent modulus at 8% tensile strain when the initially crimped molecule is straightened out, for pulling rates below 0.5 m/s. This enables us for the first time to predict the elastic properties of a single tropocollagen molecule at physiologically and experimentally relevant pulling rates, directly from atomistic-level calculations. At deformation rates larger than 0.5 m/s, Young's modulus increases continuously and approaches values in excess of 15 GPa for deformation rates larger than 100 m/s. The analyses of the molecular deformation mechanisms show that the tropocollagen molecule unfolds in distinctly different ways, depending on the loading rate, which explains the observation of different values of Young's modulus at different loading rates. For low pulling rates, the triple helix first uncoils completely at 10%-20% strain, then undergoes some recoiling in the opposite direction, and finally straightens for strains larger than 30%. At intermediate rates, the molecule uncoils linearly with increasing strain up to 35% strain. Finally, at higher velocities the triple helix does not uncoil during stretching.

184 citations

Journal ArticleDOI
TL;DR: This article illustrates a conceptual framework that provides modeling facilities for context-aware, multichannel Web applications and shows how high-level modeling constructs can drive the application development process through automatic code generation.
Abstract: Context-aware, multi-channel Web applications are more and more gaining consensus among both content providers and consumers, but very few proposals exist for their conceptual modeling. This article illustrates a conceptual framework that provides modeling facilities for context-aware, multichannel Web applications; it also shows how high-level modeling constructs can drive the application development process through automatic code generation. Our work stresses the importance of user-independent, context-triggered adaptation actions, in which the context plays the role of a “first class” actor, operating independently of users on the same hypertext the users navigate. Modeling concepts are based on WebML (Web Modeling Language), an already established conceptual model for data-intensive Web applications, which is also accompanied by a development method and a CASE tool. However, given their general validity, the concepts of this article shape up a complete framework that can be adopted independently of the chosen model, method, and tool.

184 citations

Journal ArticleDOI
TL;DR: Waveguides manufactured with the 520-nm radiation from a frequency-doubled, diode-pumped, cavity-dumped Yb:glass laser operating at a 166-KHz repetition rate, with a 300-fs pulse duration are demonstrated.
Abstract: Laser action is demonstrated in a 20-mm-long waveguide fabricated on an Er:Yb-doped phosphate glass by femtosecond laser pulses. An output power of 1.7 mW with approximately 300 mW of pump power coupled into the waveguide is obtained at 1533.5 nm. Waveguides are manufactured with the 520-nm radiation from a frequency-doubled, diode-pumped, cavity-dumped Yb:glass laser operating at a 166-KHz repetition rate, with a 300-fs pulse duration.

184 citations

Book ChapterDOI
07 Oct 2002
TL;DR: The use of graph transformation is demonstrated to model object- and component-based systems and to specify syntax and semantics of diagram languages in software engineering.
Abstract: We give an introduction to graph transformation, not only for researchers in software engineering, but based on applications of graph transformation in this domain. In particular, we demonstrate the use of graph transformation to model object- and component-based systems and to specify syntax and semantics of diagram languages. Along the way we introduce the basic concepts, discuss different approaches, and mention relevant theory and tools.

183 citations


Authors

Showing all 18743 results

NameH-indexPapersCitations
Alex J. Barker132127384746
Pierluigi Zotto128119778259
Andrea C. Ferrari126636124533
Marco Dorigo10565791418
Marcello Giroletti10355841565
Luciano Gattinoni10361048055
Luca Benini101145347862
Alberto Sangiovanni-Vincentelli9993445201
Surendra P. Shah9971032832
X. Sunney Xie9822544104
Peter Nijkamp97240750826
Nicola Neri92112241986
Ursula Keller9293433229
A. Rizzi9165340038
Martin J. Blunt8948529225
Network Information
Related Institutions (5)
Delft University of Technology
94.4K papers, 2.7M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

93% related

Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023302
2022813
20214,152
20204,301
20193,831
20183,767