scispace - formally typeset
Search or ask a question
Institution

Tata Institute of Fundamental Research

EducationMumbai, Maharashtra, India
About: Tata Institute of Fundamental Research is a education organization based out in Mumbai, Maharashtra, India. It is known for research contribution in the topics: Magnetization & Large Hadron Collider. The organization has 7786 authors who have published 21742 publications receiving 622368 citations. The organization is also known as: TIFR.


Papers
More filters
Journal ArticleDOI
TL;DR: The most general form of the equations of relativistic superfluid hydrodynamics consistent with Lorentz invariance, time-reversal invariance and second law of thermodynamics at first order in the derivative expansion were derived in this paper.
Abstract: We determine the most general form of the equations of relativistic superfluid hydrodynamics consistent with Lorentz invariance, time-reversal invariance, the Onsager principle and the second law of thermodynamics at first order in the derivative expansion. Once parity is violated, either because the U(1) symmetry is anomalous or as a consequence of a different parity-breaking mechanism, our results deviate from the standard textbook analysis of superfluids. Our general equations require the specification of twenty parameters (such as the viscosity and conductivity). In the limit of small relative superfluid velocities we find a seven parameter set of equations. In the same limit, we have used the AdS/CFT correspondence to compute the parity odd contributions to the superfluid equations of motion for a generic holographic model and have verified that our results are consistent.

188 citations

Journal ArticleDOI
TL;DR: A BIC-driven terahertz metasurface with dynamic control of high-Q silicon supercavities that are reconfigurable at a nanosecond timescale is experimentally demonstrated and revealed that such superc Cavities enable low-power, optically induced teraHertz switching and modulation of sharp resonances for potential applications in lasing, mode multiplexing, and biosensing.
Abstract: The remarkable emergence of all-dielectric meta-photonics governed by the physics of high-index dielectric materials offers a low-loss platform for efficient manipulation and subwavelength control of electromagnetic waves from microwaves to visible frequencies. Dielectric metasurfaces can focus electromagnetic waves, generate structured beams and vortices, enhance local fields for advanced sensing, and provide novel functionalities for classical and quantum technologies. Recent advances in meta-photonics are associated with the exploration of exotic electromagnetic modes called the bound states in the continuum (BICs), which offer a simple interference mechanism to achieve large quality factors (Q) through excitation of supercavity modes in dielectric nanostructures and resonant metasurfaces. Here, a BIC-driven terahertz metasurface with dynamic control of high-Q silicon supercavities that are reconfigurable at a nanosecond timescale is experimentally demonstrated. It is revealed that such supercavities enable low-power, optically induced terahertz switching and modulation of sharp resonances for potential applications in lasing, mode multiplexing, and biosensing.

188 citations

Journal ArticleDOI
TL;DR: In this article, a Brownian particle diffusing under a time-modulated stochastic resetting mechanism to a fixed position is studied and the rate of resetting r(t) is a function of the time t since the last reset event.
Abstract: We study a Brownian particle diffusing under a time-modulated stochastic resetting mechanism to a fixed position. The rate of resetting r(t) is a function of the time t since the last reset event. We derive a sufficient condition on r(t) for a steady-state probability distribution of the position of the particle to exist. We derive the form of the steady-state distributions under some particular choices of r(t) and also consider the late time relaxation behavior of the probability distribution. We consider first passage time properties for the Brownian particle to reach the origin and derive a formula for the mean first passage time (MFPT). Finally, we study optimal properties of the MFPT and show that a threshold function is at least locally optimal for the problem of minimizing the MFPT.

187 citations

Journal ArticleDOI
TL;DR: Among other roles, clathrin-independent endocytosis has now been linked to plasma membrane repair, cellular spreading, cellular polarization, and modulation of intercellular signaling.

187 citations


Authors

Showing all 7857 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Suvadeep Bose154960129071
Subir Sarkar1491542144614
Sw. Banerjee1461906124364
Dipanwita Dutta1431651103866
Ajit Kumar Mohanty141112493062
Tariq Aziz138164696586
Andrew Mehta1371444101810
Suchandra Dutta134126587709
Kajari Mazumdar134129594253
Bobby Samir Acharya1331121100545
Gobinda Majumder133152387732
Eric Conte132120684593
Prashant Shukla131134185287
Alessandro Montanari131138793071
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

90% related

University of Paris-Sud
52.7K papers, 2.1M citations

90% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

90% related

Brookhaven National Laboratory
39.4K papers, 1.7M citations

89% related

Weizmann Institute of Science
54.5K papers, 3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
2022128
2021939
20201,085
20191,100
20181,040