scispace - formally typeset
Search or ask a question

Showing papers by "Tata Institute of Fundamental Research published in 2013"


Journal ArticleDOI
TL;DR: This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments, and highlights the experimental relevance of various semimicroscopic derivations of the continuum theory for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material.
Abstract: This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments. This approach offers a unified framework for the mechanical and statistical properties of living matter: biofilaments and molecular motors in vitro or in vivo, collections of motile microorganisms, animal flocks, and chemical or mechanical imitations. A major goal of this review is to integrate several approaches proposed in the literature, from semimicroscopic to phenomenological. In particular, first considered are ``dry'' systems, defined as those where momentum is not conserved due to friction with a substrate or an embedding porous medium. The differences and similarities between two types of orientationally ordered states, the nematic and the polar, are clarified. Next, the active hydrodynamics of suspensions or ``wet'' systems is discussed and the relation with and difference from the dry case, as well as various large-scale instabilities of these nonequilibrium states of matter, are highlighted. Further highlighted are various large-scale instabilities of these nonequilibrium states of matter. Various semimicroscopic derivations of the continuum theory are discussed and connected, highlighting the unifying and generic nature of the continuum model. Throughout the review, the experimental relevance of these theories for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material is discussed. Promising extensions toward greater realism in specific contexts from cell biology to animal behavior are suggested, and remarks are given on some exotic active-matter analogs. Last, the outlook for a quantitative understanding of active matter, through the interplay of detailed theory with controlled experiments on simplified systems, with living or artificial constituents, is summarized.

3,314 citations


Journal ArticleDOI
A. A. Abdo1, A. A. Abdo2, Marco Ajello3, Alice Allafort4  +254 moreInstitutions (60)
TL;DR: In this article, a catalog of gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite is presented.
Abstract: This catalog summarizes 117 high-confidence > 0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data, through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

929 citations


Journal ArticleDOI
TL;DR: In this article, a review is given of an experimentally falsifiable phenomenological proposal, known as continuous spontaneous collapse, which is a stochastic nonlinear modification of the Schrodinger equation.
Abstract: Quantum mechanics is an extremely successful theory that agrees with every experimental test. However, the principle of linear superposition, a central tenet of the theory, apparently contradicts a commonplace observation: macroscopic objects are never found in a linear superposition of position states. Moreover, the theory does not explain why during a quantum measurement, deterministic evolution is replaced by probabilistic evolution, whose random outcomes obey the Born probability rule. In this article a review is given of an experimentally falsifiable phenomenological proposal, known as continuous spontaneous collapse: a stochastic nonlinear modification of the Schr\"odinger equation, which resolves these problems, while giving the same experimental results as quantum theory in the microscopic regime. Two underlying theories for this phenomenology are reviewed: trace dynamics and gravity-induced collapse. As the macroscopic scale is approached, predictions of this proposal begin to differ appreciably from those of quantum theory and are being confronted by ongoing laboratory experiments that include molecular interferometry and optomechanics. These experiments, which test the validity of linear superposition for large systems, are reviewed here, and their technical challenges, current results, and future prospects summarized. It is likely that over the next two decades or so, these experiments can verify or rule out the proposed stochastic modification of quantum theory.

901 citations


Journal ArticleDOI
B. S. Acharya1, Marcos Daniel Actis2, T. Aghajani3, G. Agnetta4  +979 moreInstitutions (122)
TL;DR: The Cherenkov Telescope Array (CTA) as discussed by the authors is a very high-energy (VHE) gamma ray observatory with an international collaboration with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America.

701 citations


Journal ArticleDOI
S. Schael1, R. Barate2, R. Brunelière2, D. Buskulic2  +1672 moreInstitutions (143)
TL;DR: In this paper, the results of the four LEP experiments were combined to determine fundamental properties of the W boson and the electroweak theory, including the branching fraction of W and the trilinear gauge-boson self-couplings.

684 citations


Journal ArticleDOI
TL;DR: In this article, a detailed description of the analysis used by the CMS Collaboration in the search for the standard model Higgs boson in pp collisions at the LHC, which led to the observation of a new boson.
Abstract: A detailed description is reported of the analysis used by the CMS Collaboration in the search for the standard model Higgs boson in pp collisions at the LHC, which led to the observation of a new boson. The data sample corresponds to integrated luminosities up to 5.1 inverse femtobarns at sqrt(s) = 7 TeV, and up to 5.3 inverse femtobarns at sqrt(s) = 8 TeV. The results for five Higgs boson decay modes gamma gamma, ZZ, WW, tau tau, and bb, which show a combined local significance of 5 standard deviations near 125 GeV, are reviewed. A fit to the invariant mass of the two high resolution channels, gamma gamma and ZZ to 4 ell, gives a mass estimate of 125.3 +/- 0.4 (stat) +/- 0.5 (syst) GeV. The measurements are interpreted in the context of the standard model Lagrangian for the scalar Higgs field interacting with fermions and vector bosons. The measured values of the corresponding couplings are compared to the standard model predictions. The hypothesis of custodial symmetry is tested through the measurement of the ratio of the couplings to the W and Z bosons. All the results are consistent, within their uncertainties, with the expectations for a standard model Higgs boson.

643 citations


Journal ArticleDOI
Z. Q. Liu, C. P. Shen1, C. Z. Yuan, I. Adachi  +188 moreInstitutions (56)
TL;DR: In a study of Y(4260) → π+ π- J/φ decays, a structure is observed in the M(π(±)J/ψ) mass spectrum with 5.2σ significance that can be interpreted as a new charged charmoniumlike state.
Abstract: The cross section for ee+ e- → π+ π- J/ψ between 3.8 and 5.5 GeV is measured with a 967 fb(-1) data sample collected by the Belle detector at or near the Υ(nS) (n = 1,2,…,5) resonances. The Y(4260) state is observed, and its resonance parameters are determined. In addition, an excess of π+ π- J/ψ production around 4 GeV is observed. This feature can be described by a Breit-Wigner parametrization with properties that are consistent with the Y(4008) state that was previously reported by Belle. In a study of Y(4260) → π+ π- J/ψ decays, a structure is observed in the M(π(±)J/ψ) mass spectrum with 5.2σ significance, with mass M = (3894.5 ± 6.6 ± 4.5) MeV/c2 and width Γ = (63 ± 24 ± 26) MeV/c2, where the errors are statistical and systematic, respectively. This structure can be interpreted as a new charged charmoniumlike state.

622 citations


Journal ArticleDOI
TL;DR: In this paper, two-particle angular correlations for charged particles emitted in pPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV are presented.

575 citations


Journal ArticleDOI
TL;DR: In this paper, measurements of two-and four-particle angular correlations for charged particles emitted in pPb collisions are presented over a wide range in pseudorapidity and full azimuth.

423 citations


Journal ArticleDOI
TL;DR: The present data are consistent with the pure scalar hypothesis, while disfavoring the pure pseudoscalar hypothesis.
Abstract: A study is presented of the mass and spin-parity of the new boson recently observed at the LHC at a mass near 125 GeV. An integrated luminosity of 17.3 fb^(-1), collected by the CMS experiment in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, is used. The measured mass in the ZZ channel, where both Z bosons decay to e or μ pairs, is 126.2±0.6(stat)±0.2(syst) GeV. The angular distributions of the lepton pairs in this channel are sensitive to the spin-parity of the boson. Under the assumption of spin 0, the present data are consistent with the pure scalar hypothesis, while disfavoring the pure pseudoscalar hypothesis.

353 citations


Journal ArticleDOI
TL;DR: An unbinned maximum-likelihood fit to the dimuon invariant mass distribution gives a branching fraction B(Bs(0)→μ+ μ-)=(3.0(-0.9)(+1.0))×10(-9), where the uncertainty includes both statistical and systematic contributions.
Abstract: Results are presented from a search for the rare decays B0s→μ+μ− and B0→μ+μ− in pp collisions at s√=7 and 8 TeV, with data samples corresponding to integrated luminosities of 5 and 20 fb−1, respectively, collected by the CMS experiment at the LHC. An unbinned maximum-likelihood fit to the dimuon invariant mass distribution gives a branching fraction B(B0s→μ+μ−)=(3.0+1.0−0.9)×10−9, where the uncertainty includes both statistical and systematic contributions. An excess of B0s→μ+μ− events with respect to background is observed with a significance of 4.3 standard deviations. For the decay B0→μ+μ− an upper limit of B(B0→μ+μ−)<1.1×10−9 at the 95% confidence level is determined. Both results are in agreement with the expectations from the standard model.

Journal ArticleDOI
S. Chatrchyan1, Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1  +3948 moreInstitutions (144)
21 Dec 2013
TL;DR: In this article, a search for the pair production of top squarks in events with a single isolated electron or muon, jets, large missing transverse momentum, and large transverse mass is presented.
Abstract: This paper presents a search for the pair production of top squarks in events with a single isolated electron or muon, jets, large missing transverse momentum, and large transverse mass. The data sample corresponds to an integrated luminosity of 19.5 inverse femtobarns of pp collisions collected in 2012 by the CMS experiment at the LHC at a center-of-mass energy of sqrt(s) = 8 TeV. No significant excess in data is observed above the expectation from standard model processes. The results are interpreted in the context of supersymmetric models with pair production of top squarks that decay either to a top quark and a neutralino or to a bottom quark and a chargino. For small mass values of the lightest supersymmetric particle, top-squark mass values up to around 650 GeV are excluded.

Journal ArticleDOI
TL;DR: In this paper, the authors explored the use of a singular value decomposition to remove foregrounds with fewer assumptions about the foreground structure and provided a revised measurement of a 2σ upper limit at (248 mK)^2 for k = 0.6.
Abstract: The Giant Metrewave Radio Telescope Epoch of Reionization experiment is an ongoing effort to measure the power spectrum from neutral hydrogen at high redshift. We have previously reported an upper limit of (70 mK)^2 at wavenumbers of k ≈ 0.65 h Mpc^(−1) using a basic piecewise-linear foreground subtraction. In this paper, we explore the use of a singular value decomposition to remove foregrounds with fewer assumptions about the foreground structure. Using this method, we also quantify, for the first time, the signal loss due to the foreground filter and present new power spectra adjusted for this loss, providing a revised measurement of a 2σ upper limit at (248 mK)^2 for k = 0.50 h Mpc^(−1). While this revised limit is larger than previously reported, we believe it to be more robust and still represents the best current constraint on reionization at z ≈ 8.6.

Journal ArticleDOI
TL;DR: In this article, results of searches for heavy stable charged particles produced in pp collisions at 7 and 8 TeV are presented corresponding to an integrated luminosity of 5.0 and 18.8 inverse femtobarns, respectively.
Abstract: Results of searches for heavy stable charged particles produced in pp collisions at sqrt(s) = 7 and 8 TeV are presented corresponding to an integrated luminosity of 5.0 inverse femtobarns and 18.8 inverse femtobarns, respectively. Data collected with the CMS detector are used to study the momentum, energy deposition, and time-of-flight of signal candidates. Leptons with an electric charge between e/3 and 8e, as well as bound states that can undergo charge exchange with the detector material, are studied. Analysis results are presented for various combinations of signatures in the inner tracker only, inner tracker and muon detector, and muon detector only. Detector signatures utilized are long time-of-flight to the outer muon system and anomalously high (or low) energy deposition in the inner tracker. The data are consistent with the expected background, and upper limits are set on the production cross section of long-lived gluinos, scalar top quarks, and scalar tau leptons, as well as pair produced long-lived leptons. Corresponding lower mass limits, ranging up to 1322 GeV for gluinos, are the most stringent to date.

Journal ArticleDOI
TL;DR: In this article, a supersymmetric and parity violating version of Vasiliev's higher spin gauge theory in AdS4 admits boundary conditions that preserve or 6 supersymmetries.
Abstract: We demonstrate that a supersymmetric and parity violating version of Vasiliev’s higher spin gauge theory in AdS4 admits boundary conditions that preserve or 6 supersymmetries. In particular, we argue that the Vasiliev theory with U(M) Chan–Paton and boundary condition is holographically dual to the 2+1 dimensional U(N)k × U(M)−k ABJ theory in the limit of large N, k and finite M. In this system all bulk higher spin fields transform in the adjoint of the U(M) gauge group, whose bulk t’Hooft coupling is M/N. Analysis of boundary conditions in Vasiliev theory allows us to determine exact relations between the parity breaking phase of Vasiliev theory and the coefficients of two and three point functions in Chern–Simons vector models at large N. Our picture suggests that the supersymmetric Vasiliev theory can be obtained as a limit of type IIA string theory in AdS, and that the non-Abelian Vasiliev theory at strong bulk ’t Hooft coupling smoothly turn into a string field theory. The fundamental string is a singlet bound state of Vasiliev’s higher spin particles held together by U(M) gauge interactions. This is illustrated by the thermal partition function of free ABJ theory on a two sphere at large M and N even in the analytically tractable free limit. In this system the traces or strings of the low temperature phase break up into their Vasiliev particulate constituents at a U(M) deconfinement phase transition of order unity. At a higher temperature of order Vasiliev’s higher spin fields themselves break up into more elementary constituents at a U(N) deconfinement temperature, in a process described in the bulk as black hole nucleation.This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Higher spin theories and holography’.

Journal ArticleDOI
17 Jan 2013-Cell
TL;DR: In this paper, the authors demonstrate optical trapping at single-molecule resolution inside cells to quantify force generation by motor teams driving single phagosomes, and propose that dyneins in such a team bunch close together and therefore share load better to overcome low/intermediate loads.

Journal ArticleDOI
N. S. Kardashev1, V. V. Khartov, V. V. Abramov2, V. Yu. Avdeev1, A. V. Alakoz1, Yu. A. Aleksandrov1, S. Ananthakrishnan3, V. V. Andreyanov1, A. S. Andrianov1, N. M. Antonov1, M. I. Artyukhov, M. Yu. Arkhipov1, W. Baan4, N.G. Babakin1, V. E. Babyshkin, N. Bartel5, K. G. Belousov1, A. A. Belyaev, J. J. Berulis1, Bernard F. Burke6, A. V. Biryukov1, A. E. Bubnov2, M. S. Burgin1, G. Busca, A. A. Bykadorov, V. S. Bychkova1, V. I. Vasil’kov1, K. J. Wellington7, I. S. Vinogradov1, R. Wietfeldt8, P. A. Voitsik1, A. S. Gvamichava1, I. A. Girin1, Leonid I. Gurvits9, Leonid I. Gurvits10, R. D. Dagkesamanskii1, L. D’Addario8, Gabriele Giovannini11, Gabriele Giovannini12, D. L. Jauncey7, Peter E. Dewdney, A. A. D’yakov2, Vladimir Zharov13, V. I. Zhuravlev1, G. S. Zaslavskii2, M. V. Zakhvatkin2, A. N. Zinov’ev1, Yu. Ilinen, A. V. Ipatov2, B. Z. Kanevskii1, I. A. Knorin1, J. L. Casse9, K. I. Kellermann14, Yu. A. Kovalev1, Yu. Yu. Kovalev15, Yu. Yu. Kovalev1, A. V. Kovalenko1, B. L. Kogan16, R. V. Komaev, A. A. Konovalenko17, G. D. Kopelyanskii1, Yu. A. Korneev1, V. I. Kostenko1, A. N. Kotik1, B. B. Kreisman1, A. Yu. Kukushkin2, V. F. Kulishenko17, D. N. Cooper7, A. M. Kutkin1, Wayne Cannon5, M. G. Larionov1, Mikhail M. Lisakov1, L. N. Litvinenko17, S. F. Likhachev1, L. N. Likhacheva1, A. P. Lobanov15, S. V. Logvinenko1, Glen Langston14, K. McCracken7, S. Yu. Medvedev, M. V. Melekhin, A. V. Menderov, David W. Murphy8, T. A. Mizyakina1, Yu. V. Mozgovoi, N. Ya. Nikolaev1, B. S. Novikov2, B. S. Novikov1, I. D. Novikov1, V. V. Oreshko1, Yu. K. Pavlenko, I. N. Pashchenko1, Yu. N. Ponomarev1, M. V. Popov1, A. Pravin-Kumar3, Robert A. Preston8, V. N. Pyshnov1, I. A. Rakhimov2, V. M. Rozhkov, Jonathan D. Romney14, P. Rocha, V. A. Rudakov1, Antti V. Räisänen18, S. V. Sazankov1, Boris A. Sakharov, S. K. Semenov, V. A. Serebrennikov, R. T. Schilizzi, D. P. Skulachev2, V. I. Slysh1, A. I. Smirnov1, Joel Smith8, V. A. Soglasnov1, K. V. Sokolovskii1, K. V. Sokolovskii13, L. H. Sondaar4, V. A. Stepan’yants2, M. S. Turygin2, S. Yu. Turygin2, A. G. Tuchin2, S. Urpo18, S.D. Fedorchuk1, A. M. Finkel’shtein2, Ed Fomalont14, I. Fejes, A. N. Fomina, Yu. B. Khapin2, G. S. Tsarevskii1, J. A. Zensus15, A. A. Chuprikov1, M. V. Shatskaya1, N. Ya. Shapirovskaya1, A. I. Sheikhet, A. E. Shirshakov, A. Schmidt15, L. A. Shnyreva1, V. V. Shpilevskii2, R. D. Ekers7, V. E. Yakimov1 
TL;DR: The RadioAstron project as mentioned in this paper is targeted at systematic studies of compact radio-emitting sources and their dynamics, including supermassive black holes, accretion disks, and relativistic jets in active galactic nuclei.
Abstract: The Russian Academy of Sciences and Federal Space Agency, together with the participation of many international organizations, worked toward the launch of the RadioAstron orbiting space observatory with its onboard 10-m reflector radio telescope from the Baikonur cosmodrome on July 18, 2011. Together with some of the largest ground-based radio telescopes and a set of stations for tracking, collecting, and reducing the data obtained, this space radio telescope forms a multi-antenna ground-space radio interferometer with extremely long baselines, making it possible for the first time to study various objects in the Universe with angular resolutions a million times better than is possible with the human eye. The project is targeted at systematic studies of compact radio-emitting sources and their dynamics. Objects to be studied include supermassive black holes, accretion disks, and relativistic jets in active galactic nuclei, stellar-mass black holes, neutron stars and hypothetical quark stars, regions of formation of stars and planetary systems in our and other galaxies, interplanetary and interstellar plasma, and the gravitational field of the Earth. The results of ground-based and inflight tests of the space radio telescope carried out in both autonomous and ground-space interferometric regimes are reported. The derived characteristics are in agreement with the main requirements of the project. The astrophysical science program has begun.

Journal ArticleDOI
TL;DR: The double explosion of SN 2009ip in 2012 raises questions about our understanding of the late stages of massive star evolution as discussed by the authors, which can be connected with documented mass-loss episodes in the previous years.
Abstract: The double explosion of SN 2009ip in 2012 raises questions about our understanding of the late stages of massive star evolution. Here we present a comprehensive study of SN 2009ip during its remarkable rebrightenings. High-cadence photometric and spectroscopic observations from the GeV to the radio band obtained from a variety of ground-based and space facilities (including the Very Large Array, Swift, Fermi, Hubble Space Telescope, and XMM) constrain SN 2009ip to be a low energy (E similar to 1050 erg for an ejecta mass similar to 0.5 M-circle dot) and asymmetric explosion in a complex medium shaped by multiple eruptions of the restless progenitor star. Most of the energy is radiated as a result of the shock breaking out through a dense shell of material located at similar to 5 x 10(14) cm with M similar to 0.1 M-circle dot, ejected by the precursor outburst similar to 40 days before the major explosion. We interpret the NIR excess of emission as signature of material located further out, the origin of which has to be connected with documented mass-loss episodes in the previous years. Our modeling predicts bright neutrino emission associated with the shock break-out if the cosmic-ray energy is comparable to the radiated energy. We connect this phenomenology with the explosive ejection of the outer layers of the massive progenitor star, which later interacted with material deposited in the surroundings by previous eruptions. Future observations will reveal if the massive luminous progenitor star survived. Irrespective of whether the explosion was terminal, SN 2009ip brought to light the existence of new channels for sustained episodic mass loss, the physical origin of which has yet to be identified.

Journal ArticleDOI
TL;DR: The pre-print version of the final publishing paper that is available from the link below as mentioned in this paper is also available from Amazon Mechanical Turk, however, the preprint version requires a subscription.
Abstract: The article is the pre-print version of the final publishing paper that is available from the link below.

Journal ArticleDOI
TL;DR: In this article, the anisotropy of the azimuthal distributions of charged particles produced in √s_(NN)=2.76 TeV PbPb collisions with the CMS experiment at the LHC is studied with the event plane method, two-and fourparticle cumulants, and Lee-Yang zeros.
Abstract: The anisotropy of the azimuthal distributions of charged particles produced in √s_(NN)=2.76 TeV PbPb collisions is studied with the CMS experiment at the LHC. The elliptic anisotropy parameter, v_2, defined as the second coefficient in a Fourier expansion of the particle invariant yields, is extracted using the event-plane method, two- and four-particle cumulants, and Lee-Yang zeros. The anisotropy is presented as a function of transverse momentum (p_T), pseudorapidity (η) over a broad kinematic range, 0.3

Journal ArticleDOI
S. Chatrchyan1, Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1  +3880 moreInstitutions (142)
TL;DR: In this paper, an inclusive search for supersymmetric processes that produce final states with jets and missing transverse energy is performed in pp collisions at a centre-of-mass energy of 8 TeV.
Abstract: An inclusive search for supersymmetric processes that produce final states with jets and missing transverse energy is performed in pp collisions at a centre-of-mass energy of 8 TeV. The data sample corresponds to an integrated luminosity of 11.7 fb−1 collected by the CMS experiment at the LHC. In this search, a dimensionless kinematic variable, α T, is used to discriminate between events with genuine and misreconstructed missing transverse energy. The search is based on an examination of the number of reconstructed jets per event, the scalar sum of transverse energies of these jets, and the number of these jets identified as originating from bottom quarks. No significant excess of events over the standard model expectation is found. Exclusion limits are set in the parameter space of simplified models, with a special emphasis on both compressed-spectrum scenarios and direct or gluino-induced production of third-generation squarks. For the case of gluino-mediated squark production, gluino masses up to 950–1125 GeV are excluded depending on the assumed model. For the direct pair-production of squarks, masses up to 450 GeV are excluded for a single light first- or second-generation squark, increasing to 600 GeV for bottom squarks.

Journal ArticleDOI
TL;DR: Understanding the mechanistic crosstalk between glucocorticoids and BDNF holds promise for the identification of potential therapeutic targets for disorders associated with the dysfunction of stress hormone pathways.

Journal ArticleDOI
TL;DR: In this article, the LHC proton-proton collisions at √s=7'TeV, corresponding to 5.0'fb-1 of integrated luminosity, have been collected with the CMS detector.
Abstract: Measurements of inclusive jet and dijet production cross sections are presented. Data from LHC proton-proton collisions at √s=7 TeV, corresponding to 5.0 fb-1 of integrated luminosity, have been collected with the CMS detector. Jets are reconstructed up to rapidity 2.5, transverse momentum 2 TeV, and dijet invariant mass 5 TeV, using the anti-kT clustering algorithm with distance parameter R=0.7. The measured cross sections are corrected for detector effects and compared to perturbative QCD predictions at next-to-leading order, using five sets of parton distribution functions.

Journal ArticleDOI
TL;DR: The results indicate that early stress may transiently endow animals with a potential adaptive advantage in stressful environments but across a life span is associated with long-term deleterious effects.

Journal ArticleDOI
TL;DR: In this article, the first study of isolated photon + jet correlations in relativistic heavy ion collisions is reported using data from PbPb collisions at a centre-of-mass energy of 2.76 TeV2.

Journal ArticleDOI
TL;DR: In this article, the gate leakage mechanisms in AlInN/GaN and AlGaN/GAN high electron mobility transistors (HEMTs) are compared using temperature-dependent gate currentvoltage (IG-VG) characteristics.
Abstract: The gate leakage mechanisms in AlInN/GaN and AlGaN/GaN high electron mobility transistors (HEMTs) are compared using temperature-dependent gate current-voltage (IG-VG) characteristics. The reverse bias gate current of AlInN/GaN HEMTs is decomposed into three distinct components, which are thermionic emission (TE), Poole-Frenkel (PF) emission, and Fowler-Nordheim (FN) tunneling. The electric field across the barrier in AlGaN/GaN HEMTs is not sufficient to support FN tunneling. Hence, only TE and PF emission is observed in AlGaN/GaN HEMTs. In both sets of devices, however, an additional trap-assisted tunneling component of current is observed at low reverse bias. A model to describe the experimental IG-VG characteristics is proposed and the procedure to extract the associated parameters is described. The model follows the experimental gate leakage current closely over a wide range of bias and temperature for both AlGaN/GaN and AlInN/GaN HEMTs.

Journal ArticleDOI
TL;DR: In this paper, the thermal free energy for all renormalizable Chern Simon the-Ories coupled to a single fundamental bosonic and fermionic field in the T Hooft large N limit was derived.
Abstract: We compute the thermal free energy for all renormalizable Chern Simon the- ories coupled to a single fundamental bosonic and fermionic field in the 't Hooft large N limit. We use our results to conjecture a strong weak coupling duality invariance for this class of theories. Our conjectured duality reduces to Giveon Kutasov duality when restricted to N = 2 supersymmetric theories and to an earlier conjectured bosonization duality in an appropriate decoupling limit. Consequently the bosonization duality may be regarded as a deformation of Giveon Kutasov duality, suggesting that it is true even at large but finite N.

Journal ArticleDOI
TL;DR: A novel magneto-optical phenomenon that originates solely from suitably designed nanostructured metal-dielectric material, the so-called Magneto-plasmonic crystal, which allows manipulating and exciting waveguide modes by a magnetic field and light of proper polarization.
Abstract: Magnetic field control of light is among the most intriguing methods for modulation of light intensity and polarization on sub-nanosecond timescales. The implementation in nanostructured hybrid materials provides a remarkable increase of magneto-optical effects. However, so far only the enhancement of already known effects has been demonstrated in such materials. Here we postulate a novel magneto-optical phenomenon that originates solely from suitably designed nanostructured metal-dielectric material, the so-called magneto-plasmonic crystal. In this material, an incident light excites coupled plasmonic oscillations and a waveguide mode. An in-plane magnetic field allows excitation of an orthogonally polarized waveguide mode that modifies optical spectrum of the magneto-plasmonic crystal and increases its transparency. The experimentally achieved light intensity modulation reaches 24%. As the effect can potentially exceed 100%, it may have great importance for applied nanophotonics. Further, the effect allows manipulating and exciting waveguide modes by a magnetic field and light of proper polarization.

Journal ArticleDOI
TL;DR: The scope of such research in the backdrop of the current status of the IndIGO action plan and the LIGO-India project is discussed in this paper, with the expectation that there will be a grand surge of activity in precision metrology, instrumentation, data handling and computation etc.
Abstract: Initiatives by the Indian Initiative in Gravitational Wave Observations (IndIGO) Consortium during the past three years have materialized into concrete plans and project opportunities for instrumentation and research based on advanced interferometer detectors. With the LIGO-India opportunity, this initiative has taken a promising path towards significant participation in gravitational wave (GW) astronomy and research and in developing and nurturing precision fabrication and measurement technologies in India. The proposed LIGO-India detector will foster integrated development of frontier GW research in India and will provide opportunity for substantial contributions to global GW research and astronomy. Widespread interest and enthusiasm about these developments in premier research and educational institutions in India leads to the expectation that there will be a grand surge of activity in precision metrology, instrumentation, data handling and computation etc. in the context of LIGO-India. We will discuss the scope of such research in the backdrop of the current status of the IndIGO action plan and the LIGO-India project.

Journal ArticleDOI
TL;DR: In this paper, a search for a Higgs boson decaying into a Z boson and a photon was performed using proton-proton collision datasets recorded by the CMS detector at the LHC.