scispace - formally typeset
Search or ask a question
Institution

Tata Institute of Fundamental Research

EducationMumbai, Maharashtra, India
About: Tata Institute of Fundamental Research is a education organization based out in Mumbai, Maharashtra, India. It is known for research contribution in the topics: Magnetization & Large Hadron Collider. The organization has 7786 authors who have published 21742 publications receiving 622368 citations. The organization is also known as: TIFR.


Papers
More filters
Journal ArticleDOI
TL;DR: This work reviews both experimental and theoretical aspects of the recently discovered phenomena of 'parity effect' and 'shell effect' that lead to a strong, non-monotonic size dependence of the superconducting energy gap and associated properties in quasi-0D superconductors.
Abstract: Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors—such as the coherence length or the penetration depth—it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters—the transition temperature, critical fields and critical current—as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of ‘parity effect’ and ‘shell effect’ that lead to a strong, non-monotonic size dependence of the superconducting energy gap and associated properties. Finally, we discuss in section 7 the properties of ordered heterostructures (bilayers and multilayers of alternating superconducting and normal phases) and disordered heterostructures (nanocomposites consisting of superconducting and normal phases), which are primarily controlled by the proximity effect.

118 citations

Journal ArticleDOI
TL;DR: In this article, a repeating fast radio burst (FRB) with a low dispersion measure (DM) was detected by the Canadian Hydrogen Intensity Mapping Experiment FRB project.
Abstract: We report on the discovery of FRB 20200120E, a repeating fast radio burst (FRB) with a low dispersion measure (DM) detected by the Canadian Hydrogen Intensity Mapping Experiment FRB project. The source DM of 87.82 pc cm−3 is the lowest recorded from an FRB to date, yet it is significantly higher than the maximum expected from the Milky Way interstellar medium in this direction (∼50 pc cm−3). We have detected three bursts and one candidate burst from the source over the period 2020 January–November. The baseband voltage data for the event on 2020 January 20 enabled a sky localization of the source to within ≃14 arcmin2 (90% confidence). The FRB localization is close to M81, a spiral galaxy at a distance of 3.6 Mpc. The FRB appears on the outskirts of M81 (projected offset ∼20 kpc) but well inside its extended H i and thick disks. We empirically estimate the probability of a chance coincidence with M81 to be <10−2. However, we cannot reject a Milky Way halo origin for the FRB. Within the FRB localization region, we find several interesting cataloged M81 sources and a radio point source detected in the Very Large Array Sky Survey. We search for prompt X-ray counterparts in Swift Burst Alert Telescope and Fermi/GBM data, and, for two of the FRB 20200120E bursts, we rule out coincident SGR 1806−20-like X-ray bursts. Due to the proximity of FRB 20200120E, future follow-up for prompt multiwavelength counterparts and subarcsecond localization could be constraining of proposed FRB models.

118 citations

Journal ArticleDOI
TL;DR: In this article, the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs) is presented.
Abstract: Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb^(−1) of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (E^(miss)_T). A second aspect is chargino-neutralino pair production, leading to hW states with E^(miss)_T. The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values.

117 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the thermodynamics of large N gauge theories on compact spaces and studied the behavior of order parameters associated with the holonomy of the gauge field around the cycles of the torus.
Abstract: In this paper we continue our study of the thermodynamics of large N gauge theories on compact spaces. We consider toroidal compactifications of pure SU(N) Yang-Mills theories and of maximally supersymmetric Yang-Mills theories dimensionally reduced to 0+1 or 1+1 dimensions, and generalizations of such theories where the adjoint fields are massive. We describe the phase structure of these theories as a function of the gauge coupling, the geometry of the compact space and the mass parameters. In particular, we study the behavior of order parameters associated with the holonomy of the gauge field around the cycles of the torus. Our methods combine analytic analysis, numerical Monte Carlo simulations, and (in the maximally supersymmetric case) information from the dual gravitational theories.

117 citations


Authors

Showing all 7857 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Suvadeep Bose154960129071
Subir Sarkar1491542144614
Sw. Banerjee1461906124364
Dipanwita Dutta1431651103866
Ajit Kumar Mohanty141112493062
Tariq Aziz138164696586
Andrew Mehta1371444101810
Suchandra Dutta134126587709
Kajari Mazumdar134129594253
Bobby Samir Acharya1331121100545
Gobinda Majumder133152387732
Eric Conte132120684593
Prashant Shukla131134185287
Alessandro Montanari131138793071
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

90% related

University of Paris-Sud
52.7K papers, 2.1M citations

90% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

90% related

Brookhaven National Laboratory
39.4K papers, 1.7M citations

89% related

Weizmann Institute of Science
54.5K papers, 3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
2022128
2021939
20201,085
20191,100
20181,040