scispace - formally typeset
Search or ask a question

Showing papers by "United States Environmental Protection Agency published in 2011"


Journal ArticleDOI
TL;DR: The utility of these compounds seems to ensure their continued use in one form or another for the foreseeable future, presenting a long-term challenge to scientists, industry leaders, and public health officials worldwide.
Abstract: Interest and concern about polyfluorinated compounds (PFCs), such as perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and an increasing number of other related compounds is growing as more is learned about these ubiquitous anthropogenic substances. Many of these compounds can be toxic, and they are regularly found in the blood of animals and humans worldwide. A great deal of research has been conducted in this area, but a surprising amount remains unknown about their distribution in the environment and how people ultimately become exposed. The utility of these compounds seems to ensure theircontinueduseinoneformoranotherfortheforeseeablefuture,presentingalong-termchallengetoscientists,industryleaders, and public health officials worldwide.

1,149 citations


Journal ArticleDOI
TL;DR: In this article, the authors assess the combined impact of eutrophication and ocean acidification on acidity in the coastal ocean, using data collected in the northern Gulf of Mexico and the East China Sea.
Abstract: Human inputs of nutrients to coastal waters can lead to the excessive production of algae, a process known as eutrophication. Microbial consumption of this organic matter lowers oxygen levels in the water 1‐3 . In addition, the carbon dioxide produced during microbial respiration increases acidity. The dissolution of atmospheric carbon dioxide in ocean waters also raises acidity, a process known as ocean acidification. Here, we assess the combined impact of eutrophication and ocean acidification on acidity in the coastal ocean, using data collected in the northern Gulf of Mexico and the East China Sea—two regions heavily influenced by nutrient‐laden rivers. We show that eutrophication in these waters is associated with the development of hypoxia and the acidification of subsurface waters, as expected. Model simulations, using data collected from the northern Gulf of Mexico, however, suggest that the drop in pH since pre-industrial times is greater than that expected from eutrophication and ocean acidification alone. We attribute the additional drop in pH— of 0.05 units—to a reduction in the ability of these carbon dioxide-rich waters to buffer changes in pH. We suggest that eutrophication could increase the susceptibility of coastal

902 citations


Journal ArticleDOI
TL;DR: In this article, the technical aspects of coal mine methane capture in and from coal mines, the main factors affecting CMM accumulations in underground coal mines and methods for capturing methane using boreholes, specific borehole designs for effective methane capture, aspects of removing methane from abandoned mines and from sealed/active gobs of operating mines, benefits of capturing and controlling CMM for mine safety, and benefits for energy production and greenhouse gas (GHG) reduction.

864 citations


Journal ArticleDOI
TL;DR: The results presented herein suggest that surface charge is one of the most important factors that govern the toxicity of AgNPs.
Abstract: As a result of the extensive number of applications of silver nanoparticles (AgNPs), their potential impacts, once released into the environment, are of concern. The toxicity of AgNPs was reported to be dependent on various factors such as particle size, shape and capping agent. Although these factors may play a role in AgNPs toxicity, the results presented herein suggest that surface charge is one of the most important factors that govern the toxicity of AgNPs. In the current study, the toxicity of four AgNPs representing various surface charging scenarios ranging from highly negative to highly positive was investigated. These AgNPs were (1) uncoated H2−AgNPs, (2) citrate coated AgNPs (Citrate-AgNPs), (3) polyvinylpyrrolidone coated AgNPs (PVP-AgNPs), and (4) branched polyethyleneimine coated AgNPs (BPEI-AgNPs). Our results clearly demonstrate that the AgNPs exhibited surface charge-dependent toxicity on the bacillus species investigated. Furthermore, ultrafiltration membranes were utilized to purify the...

793 citations


Journal ArticleDOI
TL;DR: The benefits of ultrasonication of sludge, the effect of sonication parameters, impact ofSludge characteristics on sludge disintegration, and thereby the increase in biogas production in anaerobic digester are summarized.

654 citations


Journal ArticleDOI
TL;DR: TRACI 2.0 allows the quantification of stressors that have potential effects, including ozone depletion, global warming, acidification, eutrophication, tropospheric ozone (smog) formation.
Abstract: TRACI 2.0, the Tool for the Reduction and Assessment of Chemical and other environmental Impacts 2.0, has been expanded and developed for sustainability metrics, life cycle impact assessment, industrial ecology, and process design impact assessment for developing increasingly sustainable products, processes, facilities, companies, and communities. TRACI 2.0 allows the quantification of stressors that have potential effects, including ozone depletion, global warming, acidification, eutrophication, tropospheric ozone (smog) formation, human health criteria-related effects, human health cancer, human health noncancer, ecotoxicity, and fossil fuel depletion effects. Research is going on to quantify the use of land and water in a future version of TRACI. The original version of TRACI released in August 2002 (Bare et al. J Ind Ecol 6:49–78, 2003) has been used in many prestigious applications including: the US Green Building Council’s LEED Certification (US Green Building Council, Welcome to US Green Building Council, 2008), the National Institute of Standards and Technology’s BEES (Building for Environment and Economic Sustainability) (Lippiatt, BEES 4.0: building for environmental and economic sustainability technical manual and user guide, 2007) which is used by US EPA for Environmentally Preferable Purchasing (US Environmental Protection Agency, Environmentally Preferable Purchasing (EPP), 2008d), the US Marine Corps’ EKAT (Environmental Knowledge and Assessment Tool) for military and nonmilitary uses (US Marine Corps, Environmental knowledge and assessment tool (EKAT): first time user’s guide, 2007), and within numerous college curriculums in engineering and design departments.

617 citations


Journal ArticleDOI
TL;DR: In this article, the authors define baseflow as the portion of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways.
Abstract: Baseflow is the portion of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways. Understanding baseflow processes is critical t...

442 citations


Journal ArticleDOI
TL;DR: The conceptual underpinnings of adaptive management are simple; there will always be inherent uncertainty and unpredictability in the dynamics and behavior of complex social-ecological systems, but management decisions must still be made, and whenever possible, learning should incorporate learning into management.

433 citations


Journal ArticleDOI
TL;DR: The use of microwaves to heat samples is a viable avenue for the greener synthesis of nanomaterials and provides several desirable features such as shorter reaction times, reduced energy consumption, and better product yields.
Abstract: Over the past 25 years, microwave (MW) chemistry has moved from a laboratory curiosity to a well-established synthetic technique used in many academic and industrial laboratories around the world. Although the overwhelming number of MW-assisted applications today are still performed on a laboratory (mL) scale, we expect that this enabling technology may be used on a larger, perhaps even production, scale in conjunction with radio frequency or conventional heating.Microwave chemistry is based on two main principles, the dipolar mechanism and the electrical conductor mechanism. The dipolar mechanism occurs when, under a very high frequency electric field, a polar molecule attempts to follow the field in the same alignment. When this happens, the molecules release enough heat to drive the reaction forward. In the second mechanism, the irradiated sample is an electrical conductor and the charge carriers, ions and electrons, move through the material under the influence of the electric field and lead to polari...

429 citations


Journal ArticleDOI
TL;DR: The goal is to provide a useful assessment of the obstacles associated with integrating DNA-based methods into aquatic invasive species management, and to offer recommendations for future efforts aimed at overcoming those obstacles.

408 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide an overview on the major representative progress and development of the use of ionic liquids systems for biomass pretreatment and cellulose dissolution, with their inherent advantages for biomass valorisation processes in terms of unique and tuneable physico-chemical properties.
Abstract: Petroleum is currently being used as a major source for chemicals, materials, and fuels, but poses major concerns in terms of its future utilisation due to resource limitation, increasing costs and associated environmental issues. An alternative raw material for chemicals and biofuels production is lignocellulosic biomass. The conversion of biomass to biofuels begins with biomass pretreatment in which chemical and/or physical treatments are utilised to remove or weaken the tight linkages among cell-wall components, making biomass easier to degrade. The use of ionic liquids–salts (mixtures of cations and anions that melt below 100 °C) has been described as a new potentially viable development in this area due to the increasing interest in the use of such compounds to pretreat lignocellulosic materials and to catalyse the dissolution of cellulose. This manuscript aims to provide an overview on the major representative progress and development of the use of ionic liquids systems for biomass pretreatment and cellulose dissolution. A comparison of the environmental impact of different ionic liquids for the conversion of carbohydrates into useful biofuel intermediates will be described, with their inherent advantages for biomass valorisation processes in terms of unique and tuneable physico-chemical properties.

Journal ArticleDOI
TL;DR: In this article, the authors synthesize current research relating atmospheric N deposition to effects on terrestrial and freshwater ecosystems in the United States, and to estimate associated empirical N critical loads, defined as the input of a pollutant below which no detrimental ecological effects occur over the long-term according to present knowledge.
Abstract: Human activity in the last century has led to a significant increase in nitrogen (N) emissions and atmospheric deposition. This N deposition has reached a level that has caused or is likely to cause alterations to the structure and function of many ecosystems across the United States. One approach for quantifying the deposition of pollution that would be harmful to ecosystems is the determination of critical loads. A critical load is defined as the input of a pollutant below which no detrimental ecological effects occur over the long-term according to present knowledge. The objectives of this project were to synthesize current research relating atmospheric N deposition to effects on terrestrial and freshwater ecosystems in the United States, and to estimate associated empirical N critical loads. The receptors considered included freshwater diatoms, mycorrhizal fungi, lichens, bryophytes, herbaceous plants, shrubs, and trees. Ecosystem impacts included: (1) biogeochemical responses and (2) individual species, population, and community responses. Biogeochemical responses included increased N mineralization and nitrification (and N availability for plant and microbial uptake), increased gaseous N losses (ammonia volatilization, nitric and nitrous oxide from nitrification and denitrification), and increased N leaching. Individual species, population, and community responses included increased tissue N, physiological and nutrient imbalances, increased growth, altered root : shoot ratios, increased susceptibility to secondary stresses, altered fire regime, shifts in competitive interactions and community composition, changes in species richness and other measures of biodiversity, and increases in invasive species.

Journal ArticleDOI
TL;DR: 115 sites that have experienced hypoxia during the period 1955–2009 are identified increasing the global total to ca.
Abstract: Hypoxia is a well-described phenomenon in the offshore waters of the Baltic Sea with both the spatial extent and intensity of hypoxia known to have increased due to anthropogenic eutrophication, however, an unknown amount of hypoxia is present in the coastal zone. Here we report on the widespread unprecedented occurrence of hypoxia across the coastal zone of the Baltic Sea. We have identified 115 sites that have experienced hypoxia during the period 1955-2009 increasing the global total to ca. 500 sites, with the Baltic Sea coastal zone containing over 20% of all known sites worldwide. Most sites experienced episodic hypoxia, which is a precursor to development of seasonal hypoxia. The Baltic Sea coastal zone displays an alarming trend with hypoxia steadily increasing with time since the 1950s effecting nutrient biogeochemical processes, ecosystem services, and coastal habitat.

Journal ArticleDOI
TL;DR: A review of the state-of-the-art in the use of biocompatible and biodegradable homo- and copolymers as well as enzymes for the production of stable, environmentally benign, selective and active metal nanoparticles for desired applications is presented in this article.
Abstract: Current breakthroughs in green nanotechnology are capable of transforming many of the existing processes and products that enhance environmental quality, reduce pollution, and conserve natural and non-renewable resources. Successful use of metal nanoparticles and nanocomposites in various catalytic applications, electronics, biology and biomedical applications, material science, physics, environmental remediation and interdisciplinary fields as well as their toxicity essentially depends on the structural features such as size, shape, composition and the surface chemistry of nanomaterials. Moreover, to prolong the life span of metal nanoparticles and avoid undesired effects such as aggregation in aqueous solutions and organic solvents, to prevent contamination of the environment as well as to reuse and recycle nanoparticles, it is vital to select stabilizing agents and functionalization pathways that are environmentally friendly, non toxic and easy to implement. In recent years, stabilization and surface functionalization of metal nanoparticles became ‘greener’ to the extent that biocompatible stabilizing agents, e.g. biodegradable polymers and enzymes among others were introduced. These agents were able to produce a great variety of extremely stable spherical-, rod- or flower-shaped metal nanoparticles that opened up vast opportunities for their utilization and potential mass production. This review summarizes the state-of-the-art in the use of biocompatible and biodegradable homo- and copolymers as well as enzymes for the production of stable, environmentally benign, selective and active metal nanoparticles for desired applications.

Journal ArticleDOI
TL;DR: There is an absolute critical need for integrated exposure and toxicological studies in order to accurately assess the environmental, ecological and health implications of nanotechnology enabled diesel fuel additives with existing as well as new engine designs and fuel formulations.
Abstract: Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels which are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (CeO(2)) has recently gained a wide range of applications which includes coatings, electronics, biomedical, energy and fuel additives. Many applications of engineered CeO(2) nanoparticles are dispersive in nature increasing the risk of exposure and interactions with a variety of environmental media with unknown health, safety and environmental implications. As evident from a risk assessment perspective, the health effects of CeO(2) nanoparticles are not only dependent on their intrinsic toxicity but also on the level of exposure to these novel materials. Although this may seem logical, numerous studies have assessed the health effects of nanoparticles without this simple but critical risk assessment perspective. This review extends previous exposure and toxicological assessments for CeO(2) particles by summarizing the current state of micro and nano-scale cerium exposure and health risks derived from epidemiology, air quality monitoring, fuel combustion and toxicological studies to serve as a contemporary comprehensive and integrated toxicological assessment. Based on the new information presented in this review there is an ongoing exposure to a large population to new diesel emissions generated using fuel additives containing CeO2 nanoparticles for which the environmental (air quality and climate change) and public health impacts of this new technology are not known. Therefore, there is an absolute critical need for integrated exposure and toxicological studies in order to accurately assess the environmental, ecological and health implications of nanotechnology enabled diesel fuel additives with existing as well as new engine designs and fuel formulations.

Journal ArticleDOI
TL;DR: The available microbes and their predicted nanoparticle biosynthesis mechanism, the conditions to control the size/shape and monodispersity of particles, and microbiological reaction rate enhancement using nanoparticles as catalysts are presented.

Journal ArticleDOI
TL;DR: The measurements made across Europe following the releases from the Fukushima NPP reactors have provided a significant amount of new data on the ratio of the gaseous ( 131)I fraction to total (131)I, both on a spatial scale and its temporal variation.
Abstract: Radioactive emissions into the atmosphere from the damaged reactors of the Fukushima Dai-ichi nuclear power plant (NPP) started on March 12th, 2011. Among the various radionuclides released, iodine-131 ((131)I) and cesium isotopes ((137)Cs and (134)Cs) were transported across the Pacific toward the North American continent and reached Europe despite dispersion and washout along the route of the contaminated air masses. In Europe, the first signs of the releases were detected 7 days later while the first peak of activity level was observed between March 28th and March 30th. Time variations over a 20-day period and spatial variations across more than 150 sampling locations in Europe made it possible to characterize the contaminated air masses. After the Chernobyl accident, only a few measurements of the gaseous (131)I fraction were conducted compared to the number of measurements for the particulate fraction. Several studies had already pointed out the importance of the gaseous (131)I and the large underestimation of the total (131)I airborne activity level, and subsequent calculations of inhalation dose, if neglected. The measurements made across Europe following the releases from the Fukushima NPP reactors have provided a significant amount of new data on the ratio of the gaseous (131)I fraction to total (131)I, both on a spatial scale and its temporal variation. It can be pointed out that during the Fukushima event, the (134)Cs to (137)Cs ratio proved to be different from that observed after the Chernobyl accident. The data set provided in this paper is the most comprehensive survey of the main relevant airborne radionuclides from the Fukushima reactors, measured across Europe. A rough estimate of the total (131)I inventory that has passed over Europe during this period was <1% of the released amount. According to the measurements, airborne activity levels remain of no concern for public health in Europe.

Journal ArticleDOI
TL;DR: In this article, the authors study the changes in ecosystem structure and function caused by natural gas extraction and use such data to inform sound environmental policy and to study the effects of gas extraction on surface waters.
Abstract: Extraction of natural gas from hard-to-reach reservoirs has expanded around the world and poses multiple environmental threats to surface waters. Improved drilling and extraction technology used to access low permeability natural gas requires millions of liters of water and a suite of chemicals that may be toxic to aquatic biota. There is growing concern among the scientific community and the general public that rapid and extensive natural gas development in the US could lead to degradation of natural resources. Gas wells are often close to surface waters that could be impacted by elevated sediment runoff from pipelines and roads, alteration of streamflow as a result of water extraction, and contamination from introduced chemicals or the resulting wastewater. However, the data required to fully understand these potential threats are currently lacking. Scientists therefore need to study the changes in ecosystem structure and function caused by natural gas extraction and to use such data to inform sound environmental policy.

Journal ArticleDOI
TL;DR: The results from this metagenomic survey demonstrated the presence of genes associated with resistance to antibiotics and carbohydrate metabolism suggesting that the swine gut microbiome may be shaped by husbandry practices.
Abstract: Background Uncovering the taxonomic composition and functional capacity within the swine gut microbial consortia is of great importance to animal physiology and health as well as to food and water safety due to the presence of human pathogens in pig feces. Nonetheless, limited information on the functional diversity of the swine gut microbiome is available.

Journal ArticleDOI
TL;DR: The scientific literature for fate and effects of non-nutrient contaminant concentrations is skewed for reports describing sediment contamination and bioaccumulation for trace metals, which hinders chemical risk assessments and validation of effects-based criteria.

Journal ArticleDOI
TL;DR: Network analysis demonstrated that annotated sequences clustered by management practice and fecal starch concentration, suggesting that the structures of bovine fecal bacterial communities can be dramatically different in different animal feeding operations, even at the phylum and family taxonomic levels.
Abstract: The fecal microbiome of cattle plays a critical role not only in animal health and productivity but also in food safety, pathogen shedding, and the performance of fecal pollution detection methods. Unfortunately, most published molecular surveys fail to provide adequate detail about variability in the community structures of fecal bacteria within and across cattle populations. Using massively parallel pyrosequencing of a hypervariable region of the rRNA coding region, we profiled the fecal microbial communities of cattle from six different feeding operations where cattle were subjected to consistent management practices for a minimum of 90 days. We obtained a total of 633,877 high-quality sequences from the fecal samples of 30 adult beef cattle (5 individuals per operation). Sequence-based clustering and taxonomic analyses indicate less variability within a population than between populations. Overall, bacterial community composition correlated significantly with fecal starch concentrations, largely reflected in changes in the Bacteroidetes, Proteobacteria, and Firmicutes populations. In addition, network analysis demonstrated that annotated sequences clustered by management practice and fecal starch concentration, suggesting that the structures of bovine fecal bacterial communities can be dramatically different in different animal feeding operations, even at the phylum and family taxonomic levels, and that the feeding operation is a more important determinant of the cattle microbiome than is the geographic location of the feedlot.

Journal ArticleDOI
TL;DR: Together, these findings reveal complex, interacting mechanisms responsible for how air pollution may cause neuroinflammation and DA neurotoxicity.
Abstract: Background: Air pollution is linked to central nervous system disease, but the mechanisms responsible are poorly understood. Objectives: Here, we sought to address the brain-region–specific effects of diesel exhaust (DE) and key cellular mechanisms underlying DE-induced microglia activation, neuroinflammation, and dopaminergic (DA) neurotoxicity. Methods: Rats were exposed to DE (2.0, 0.5, and 0 mg/m3) by inhalation over 4 weeks or as a single intratracheal administration of DE particles (DEP; 20 mg/kg). Primary neuron–glia cultures and the HAPI (highly aggressively proliferating immortalized) microglial cell line were used to explore cellular mechanisms. Results: Rats exposed to DE by inhalation demonstrated elevated levels of whole-brain IL-6 (interleukin-6) protein, nitrated proteins, and IBA-1 (ionized calcium-binding adaptor molecule 1) protein (microglial marker), indicating generalized neuroinflammation. Analysis by brain region revealed that DE increased TNFα (tumor necrosis factor-α), IL-1β, IL-6, MIP-1α (macrophage inflammatory protein-1α) RAGE (receptor for advanced glycation end products), fractalkine, and the IBA-1 microglial marker in most regions tested, with the midbrain showing the greatest DE response. Intratracheal administration of DEP increased microglial IBA-1 staining in the substantia nigra and elevated both serum and whole-brain TNFα at 6 hr posttreatment. Although DEP alone failed to cause the production of cytokines and chemokines, DEP (5 μg/mL) pretreatment followed by lipopolysaccharide (2.5 ng/mL) in vitro synergistically amplified nitric oxide production, TNFα release, and DA neurotoxicity. Pretreatment with fractalkine (50 pg/mL) in vitro ameliorated DEP (50 μg/mL)-induced microglial hydrogen peroxide production and DA neurotoxicity. Conclusions: Together, these findings reveal complex, interacting mechanisms responsible for how air pollution may cause neuroinflammation and DA neurotoxicity.

Journal ArticleDOI
TL;DR: In this article, a cellular automata (CA)-Markov chain model of land cover change was developed to integrate protection of environmentally sensitive areas into urban growth projections at a regional scale, and the analysis provided a quantitative illustration of how their process contributes towards achieving urban planning objectives while incorporating green infrastructure.

Journal ArticleDOI
TL;DR: This is the first study to demonstrate both respiratory and cardiac effects after brief exposure to peat wildfire smoke in rural counties with sparse air-quality monitoring.
Abstract: Background: In June 2008, burning peat deposits produced haze and air pollution far in excess of National Ambient Air Quality Standards, encroaching on rural communities of eastern North Carolina. Although the association of mortality and morbidity with exposure to urban air pollution is well established, the health effects associated with exposure to wildfire emissions are less well understood. Objective: We investigated the effects of exposure on cardiorespiratory outcomes in the population affected by the fire. Methods: We performed a population-based study using emergency department (ED) visits reported through the syndromic surveillance program NC DETECT (North Carolina Disease Event Tracking and Epidemiologic Collection Tool). We used aerosol optical depth measured by a satellite to determine a high-exposure window and distinguish counties most impacted by the dense smoke plume from surrounding referent counties. Poisson log-linear regression with a 5-day distributed lag was used to estimate changes in the cumulative relative risk (RR). Results: In the exposed counties, significant increases in cumulative RR for asthma [1.65 (95% confidence interval, 1.25–2.1)], chronic obstructive pulmonary disease [1.73 (1.06–2.83)], and pneumonia and acute bronchitis [1.59 (1.07–2.34)] were observed. ED visits associated with cardiopulmonary symptoms [1.23 (1.06–1.43)] and heart failure [1.37 (1.01–1.85)] were also significantly increased. Conclusions: Satellite data and syndromic surveillance were combined to assess the health impacts of wildfire smoke in rural counties with sparse air-quality monitoring. This is the first study to demonstrate both respiratory and cardiac effects after brief exposure to peat wildfire smoke.

Journal ArticleDOI
TL;DR: In this paper, an integrated approach of hydrological modeling and multiple regression analysis was applied to quantify contributions of changes for individual LULC classes on changes in hydrologogical components.

Journal ArticleDOI
TL;DR: In this article, green tea extract was used for nanoparticle (NP) synthesis, instead of the well-known sodium borohydride, which can act as both chelating/reducing and capping agents for the nanoparticles.

Book ChapterDOI
01 Jan 2011
TL;DR: Drinking water disinfection by-products (DBPs) are an unintended consequence of using chemical disinfectants to kill harmful pathogens in water as mentioned in this paper, which are formed by the reaction of disinfectants with naturally occurring organic matter, bromide, and iodide, as well as from anthropogenic pollutants.
Abstract: Drinking water disinfection by-products (DBPs) are an unintended consequence of using chemical disinfectants to kill harmful pathogens in water. DBPs are formed by the reaction of disinfectants with naturally occurring organic matter, bromide, and iodide, as well as from anthropogenic pollutants. Potential health risks of DBPs from drinking water include bladder cancer, early-term miscarriage, and birth defects. Risks from swimming pool DBP exposures include asthma and other respiratory effects. Several DBPs, such as trihalomethanes (THMs), haloacetic acids (HAAs), bromide, and chlorite, are regulated in the U.S. and in other countries, but other “emerging” DBPs, such as iodo-acids, halonitromethanes, haloamides, halofuranones, and nitrosamines, are not widely regulated. DBPs have been reported for the four major disinfectants: chlorine, chloramines, ozone, and chlorine dioxide (and their combinations), as well as for newer disinfectants, such as UV treatment with post-chlorination. Each disinfectant can produce its own suite of by-products. Several classes of emerging DBPs are increased in formation with the use of alternative disinfectants (e.g., chloramines), including nitrogen-containing DBPs (“N-DBPs”), which are generally more genotoxic and cytotoxic than those without nitrogen. Humans are exposed to DBPs not only through ingestion (the common route studied), but also through other routes, including bathing, showering, and swimming. Inhalation and dermal exposures are now being recognized as important contributors to the overall human health risk of DBPs. Analytical methods continue to be developed to measure known DBPs, and research continues to uncover new highly polar and high-molecular-weight DBPs that are part of the missing fraction of DBPs not yet accounted for. New studies are now combining toxicology and chemistry to better understand the health risks of DBPs and uncover which are responsible for the human health effects.

Journal ArticleDOI
TL;DR: The zebrafish embryo is a useful small model for investigating vertebrate development because of its transparency, low cost, transgenic and morpholino capabilities, conservation of cell signaling, and concords with mammalian developmental phenotypes.
Abstract: The zebrafish embryo is a useful small model for investigating vertebrate development because of its transparency, low cost, transgenic and morpholino capabilities, conservation of cell signaling, and concordance with mammalian developmental phenotypes. From these advantages, the zebrafish embryo has been considered as an alternative model for traditional in vivo developmental toxicity screening. The use of this organism in conjunction with traditional in vivo developmental toxicity testing has the potential to reduce cost and increase throughput of testing the chemical universe, prioritize chemicals for targeted toxicity testing, generate predictive models of developmental toxicants, and elucidate mechanisms and adverse outcome pathways for abnormal development. This review gives an overview of the zebrafish embryo for pre dictive toxicology and 21st century toxicity testing. Developmental eye defects were selected as an example to evaluate data from the U.S. Environmental Protection Agency's ToxCast program comparing responses in zebrafish embryos with those from pregnant rats and rabbits for a subset of 24 environmental chemicals across >600 in vitro assay targets. Cross-species comparisons implied a common basis for biological pathways associated with neuronal defects, extracellular matrix remodeling, and mitotic arrest.

Journal ArticleDOI
TL;DR: Investigation in a population-based cohort of 57,053 people found exposure to residential road traffic noise was associated with a higher risk for stroke among people older than 64.5 years of age.
Abstract: Epidemiological studies suggest that long-term exposure to road traffic noise increases the risk of cardiovascular dis- orders. The aim of this study was to investigate the relation between exposure to road traffic noise and risk for stroke, which has not been studied before. Methods and results In a population-based cohort of 57 053 people, we identified 1881 cases of first-ever stroke in a national hospital register between 1993-1997 and 2006. Exposure to road traffic noise and air pollution during the same period was estimated for all cohort members from residential address history. Associations between exposure to road traffic noise and stroke incidence were analysed in a Cox regression model with stratification for gender and calen- dar-year and adjustment for air pollution and other potential confounders. We found an incidence rate ratio (IRR) of 1.14 for stroke (95% confidence interval (CI): 1.03-1.25) per 10 dB higher level of road traffic noise (Lden). There was a statistically significant interaction with age (P , 0.001), with a strong association between road traffic noise and stroke among cases over 64.5 years (IRR: 1.27; 95% CI: 1.13-1.43) and no association for those under 64.5 years (IRR: 1.02; 95% CI: 0.91-1.14). Conclusion Exposure to residential road traffic noise was associated with a higher risk for stroke among people older than 64.5 years of age.

Journal ArticleDOI
TL;DR: In this paper, a detailed budget of formic and acetic acids, two of the most abundant trace gases in the atmosphere, was presented, and the authors used the GEOS-Chem chemical transport model to evaluate this budget against an extensive suite of measurements from ground, ship and satellite-based Fourier transform spectrometers.
Abstract: We present a detailed budget of formic and acetic acids, two of the most abundant trace gases in the atmosphere Our bottom-up estimate of the global source of formic and acetic acids are ~1200 and ~1400 Gmol yr^(−1), dominated by photochemical oxidation of biogenic volatile organic compounds, in particular isoprene Their sinks are dominated by wet and dry deposition We use the GEOS-Chem chemical transport model to evaluate this budget against an extensive suite of measurements from ground, ship and satellite-based Fourier transform spectrometers, as well as from several aircraft campaigns over North America The model captures the seasonality of formic and acetic acids well but generally underestimates their concentration, particularly in the Northern midlatitudes We infer that the source of both carboxylic acids may be up to 50% greater than our estimate and report evidence for a long-lived missing secondary source of carboxylic acids that may be associated with the aging of organic aerosols Vertical profiles of formic acid in the upper troposphere support a negative temperature dependence of the reaction between formic acid and the hydroxyl radical as suggested by several theoretical studies