scispace - formally typeset
Search or ask a question

Showing papers in "BMC Microbiology in 2011"


Journal ArticleDOI
TL;DR: The results indicate that mucosal microbial diversity is reduced in IBD, particularly in CD, and that the species composition is disturbed, and may support the hypothesis that the overall dysbiosis observed in inflammatory bowel disease patients relative to non-IBD controls might be a result of the disturbed gut environment rather than the direct cause of disease.
Abstract: The gut microbiota is thought to play a key role in the development of the inflammatory bowel diseases Crohn's disease (CD) and ulcerative colitis (UC). Shifts in the composition of resident bacteria have been postulated to drive the chronic inflammation seen in both diseases (the "dysbiosis" hypothesis). We therefore specifically sought to compare the mucosa-associated microbiota from both inflamed and non-inflamed sites of the colon in CD and UC patients to that from non-IBD controls and to detect disease-specific profiles. Paired mucosal biopsies of inflamed and non-inflamed intestinal tissue from 6 CD (n = 12) and 6 UC (n = 12) patients were compared to biopsies from 5 healthy controls (n = 5) by in-depth sequencing of over 10,000 near full-length bacterial 16S rRNA genes. The results indicate that mucosal microbial diversity is reduced in IBD, particularly in CD, and that the species composition is disturbed. Firmicutes were reduced in IBD samples and there were concurrent increases in Bacteroidetes, and in CD only, Enterobacteriaceae. There were also significant differences in microbial community structure between inflamed and non-inflamed mucosal sites. However, these differences varied greatly between individuals, meaning there was no obvious bacterial signature that was positively associated with the inflamed gut. These results may support the hypothesis that the overall dysbiosis observed in inflammatory bowel disease patients relative to non-IBD controls might to some extent be a result of the disturbed gut environment rather than the direct cause of disease. Nonetheless, the observed shifts in microbiota composition may be important factors in disease maintenance and severity.

606 citations


Journal ArticleDOI
TL;DR: Data reveal a role for OMVs in contributing to innate bacterial defense by adsorption of antimicrobial peptides and bacteriophage, and conclude that OMV production may be an important factor in neutralizing environmental agents that target the outer membrane of Gram-negative bacteria.
Abstract: Outer membrane vesicles (OMVs) are constitutively produced by Gram-negative bacteria throughout growth and have proposed roles in virulence, inflammation, and the response to envelope stress. Here we investigate outer membrane vesiculation as a bacterial mechanism for immediate short-term protection against outer membrane acting stressors. Antimicrobial peptides as well as bacteriophage were used to examine the effectiveness of OMV protection. We found that a hyper-vesiculating mutant of Escherichia coli survived treatment by antimicrobial peptides (AMPs) polymyxin B and colistin better than the wild-type. Supplementation of E. coli cultures with purified outer membrane vesicles provided substantial protection against AMPs, and AMPs significantly induced vesiculation. Vesicle-mediated protection and induction of vesiculation were also observed for a human pathogen, enterotoxigenic E. coli (ETEC), challenged with polymyxin B. When ETEC with was incubated with low concentrations of vesicles concomitant with polymyxin B treatment, bacterial survival increased immediately, and the culture gained resistance to polymyxin B. By contrast, high levels of vesicles also provided immediate protection but prevented acquisition of resistance. Co-incubation of T4 bacteriophage and OMVs showed fast, irreversible binding. The efficiency of T4 infection was significantly reduced by the formation of complexes with the OMVs. These data reveal a role for OMVs in contributing to innate bacterial defense by adsorption of antimicrobial peptides and bacteriophage. Given the increase in vesiculation in response to the antimicrobial peptides, and loss in efficiency of infection with the T4-OMV complex, we conclude that OMV production may be an important factor in neutralizing environmental agents that target the outer membrane of Gram-negative bacteria.

452 citations


Journal ArticleDOI
TL;DR: The results from this metagenomic survey demonstrated the presence of genes associated with resistance to antibiotics and carbohydrate metabolism suggesting that the swine gut microbiome may be shaped by husbandry practices.
Abstract: Background Uncovering the taxonomic composition and functional capacity within the swine gut microbial consortia is of great importance to animal physiology and health as well as to food and water safety due to the presence of human pathogens in pig feces. Nonetheless, limited information on the functional diversity of the swine gut microbiome is available.

327 citations


Journal ArticleDOI
TL;DR: The gluten-free diet lasting at least two years did not completely restore the microbiota and the metabolome of CD children, and the levels of volatile organic compounds and free amino acids in faecal and or urine samples were markedly affected by CD.
Abstract: Epidemiology of celiac disease (CD) is increasing. CD mainly presents in early childhood with small intestinal villous atrophy and signs of malabsorption. Compared to healthy individuals, CD patients seemed to be characterized by higher numbers of Gram-negative bacteria and lower numbers Gram-positive bacteria. This study aimed at investigating the microbiota and metabolome of 19 celiac disease children under gluten-free diet (treated celiac disease, T-CD) and 15 non-celiac children (HC). PCR-denaturing gradient gel electrophoresis (DGGE) analyses by universal and group-specific primers were carried out in duodenal biopsies and faecal samples. Based on the number of PCR-DGGE bands, the diversity of Eubacteria was the higher in duodenal biopsies of T-CD than HC children. Bifidobacteria were only found in faecal samples. With a few exceptions, PCR-DGGE profiles of faecal samples for Lactobacillus and Bifidobacteria differed between T-CD and HC. As shown by culture-dependent methods, the levels of Lactobacillus, Enterococcus and Bifidobacteria were confirmed to be significantly higher (P = 0.028; P = 0.019; and P = 0.023, respectively) in fecal samples of HC than in T-CD children. On the contrary, cell counts (CFU/ml) of presumptive Bacteroides, Staphylococcus, Salmonella, Shighella and Klebsiella were significantly higher (P = 0.014) in T-CD compared to HC children. Enterococcus faecium and Lactobacillus plantarum were the species most diffusely identified. This latter species was also found in all duodenal biopsies of T-CD and HC children. Other bacterial species were identified only in T-CD or HC faecal samples. As shown by Randomly Amplified Polymorphic DNA-PCR analysis, the percentage of strains identified as lactobacilli significantly (P = 0.011) differed between T-CD (ca. 26.5%) and HC (ca. 34.6%) groups. The metabolome of T-CD and HC children was studied using faecal and urine samples which were analyzed by gas-chromatography mass spectrometry-solid-phase microextraction and 1H-Nuclear Magnetic Resonance. As shown by Canonical Discriminant Analysis of Principal Coordinates, the levels of volatile organic compounds and free amino acids in faecal and/or urine samples were markedly affected by CD. As shown by the parallel microbiology and metabolome approach, the gluten-free diet lasting at least two years did not completely restore the microbiota and, consequently, the metabolome of CD children. Some molecules (e.g., ethyl-acetate and octyl-acetate, some short chain fatty acids and free amino acids, and glutamine) seems to be metabolic signatures of CD.

272 citations


Journal ArticleDOI
TL;DR: This report represents the first survey of the bacteriome in the cattle tick using non-culture based molecular approaches and provides an indication of geographic variation in the assemblages of bacteria associated with R. microplus.
Abstract: Background Ticks are regarded as the most relevant vectors of disease-causing pathogens in domestic and wild animals. The cattle tick, Rhipicephalus (Boophilus) microplus, hinders livestock production in tropical and subtropical parts of the world where it is endemic. Tick microbiomes remain largely unexplored. The objective of this study was to explore the R. microplus microbiome by applying the bacterial 16S tag-encoded FLX-titanium amplicon pyrosequencing (bTEFAP) technique to characterize its bacterial diversity. Pyrosequencing was performed on adult males and females, eggs, and gut and ovary tissues from adult females derived from samples of R. microplus collected during outbreaks in southern Texas.

266 citations


Journal ArticleDOI
TL;DR: A number of candidate genes that might be involved in the interaction of Mexican lime trees with "Candidatus Phytoplasma aurantifolia" are identified.
Abstract: Background "Candidatus Phytoplasma aurantifolia", is the causative agent of witches' broom disease in Mexican lime trees (Citrus aurantifolia L.), and is responsible for major losses of Mexican lime trees in Southern Iran and Oman. The pathogen is strictly biotrophic, and thus is completely dependent on living host cells for its survival. The molecular basis of compatibility and disease development in this system is poorly understood. Therefore, we have applied a cDNA- amplified fragment length polymorphism (AFLP) approach to analyze gene expression in Mexican lime trees infected by "Ca. Phytoplasma aurantifolia".

251 citations


Journal ArticleDOI
TL;DR: Normal female urine displays a noticeable and variable bacterial 16S rDNA sequence richness, which includes fastidious and anaerobic bacteria previously shown to be associated with female urogenital pathology.
Abstract: Urine within the urinary tract is commonly regarded as "sterile" in cultivation terms. Here, we present a comprehensive in-depth study of bacterial 16S rDNA sequences associated with urine from healthy females by means of culture-independent high-throughput sequencing techniques. Sequencing of the V1V2 and V6 regions of the 16S ribosomal RNA gene using the 454 GS FLX system was performed to characterize the possible bacterial composition in 8 culture-negative (<100,000 CFU/ml) healthy female urine specimens. Sequences were compared to 16S rRNA databases and showed significant diversity, with the predominant genera detected being Lactobacillus, Prevotella and Gardnerella. The bacterial profiles in the female urine samples studied were complex; considerable variation between individuals was observed and a common microbial signature was not evident. Notably, a significant amount of sequences belonging to bacteria with a known pathogenic potential was observed. The number of operational taxonomic units (OTUs) for individual samples varied substantially and was in the range of 20 - 500. Normal female urine displays a noticeable and variable bacterial 16S rDNA sequence richness, which includes fastidious and anaerobic bacteria previously shown to be associated with female urogenital pathology.

236 citations


Journal ArticleDOI
TL;DR: The helical human cathelicidin LL-37 was tested against S. aureus, and was found to exhibit effective anti-microbial, anti-attachment as well as anti-biofilm activity at concentrations in the low μg/ml range, while the synthetic peptide ATRA1-ATRA1 demonstrates low cytoxicity against host cells but does not affect bacterial attachment.
Abstract: Background: Chronic, infected wounds typically contain multiple genera of bacteria, including Staphylococcus aureus, many of which are strong biofilm formers. Bacterial biofilms are thought to be a direct impediment to wound healing. New therapies that focus on a biofilm approach may improve the recovery and healing rate for infected wounds. In this study, cathelicidins and related short, synthetic peptides were tested for their antimicrobial effectiveness as well as their ability to inhibit the ability of S. aureus to form biofilms. Results: The helical human cathelicidin LL-37 was tested against S. aureus, and was found to exhibit effective antimicrobial, anti-attachment as well as anti-biofilm activity at concentrations in the low μg/ml range. The effect of peptide chirality and associated protease-resistance was explored through the use of an all-D amino acid peptide, D-LL-37, and in turn compared to scrambled LL-37. Helical cathelicidins have been identified in other animals such as the Chinese cobra, Naja atra (NA-CATH). We previously identified an 11-residue imperfectly repeated pattern (ATRA motif) within the sequence of NA-CATH. A series of short peptides (ATRA-1, -2, -1A), as well as a synthetic peptide, NA-CATH:ATRA1-ATRA1, were designed to explore the significance of the conserved residues within the ATRA motif for anti-microbial activity. The CD spectrum of NA-CATH and NA-CATH:ATRA1-ATRA1 revealed the structural properties of these peptides and suggested that helicity may factor into their anti-microbial and antibiofilm activities. Conclusions: The NA-CATH:ATRA1-ATRA1 peptide inhibits the production of biofilm by S. aureus in the presence of salt, exhibiting anti-biofilm activity at lower peptide concentrations than NA-CATH, LL-37 and D-LL-37; and demonstrates low cytoxicity against host cells but does not affect bacterial attachment. The peptides utilized in this anti-biofilm approach may provide templates for a new group of anti-microbials and potential future topical therapeutics for treating chronic wound infections.

194 citations


Journal ArticleDOI
TL;DR: The data show that ginger rhizosphere bacteria which make and degrade a wide range of AHLs are likely to play a collective role in determining the QS-dependent phenotype of a polymicrobial community.
Abstract: Cell-to-cell communication (quorum sensing (QS)) co-ordinates bacterial behaviour at a population level. Consequently the behaviour of a natural multi-species community is likely to depend at least in part on co-existing QS and quorum quenching (QQ) activities. Here we sought to discover novel N-acylhomoserine lactone (AHL)-dependent QS and QQ strains by investigating a bacterial community associated with the rhizosphere of ginger (Zingiber officinale) growing in the Malaysian rainforest. By using a basal growth medium containing N-(3-oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) as the sole source of carbon and nitrogen, the ginger rhizosphere associated bacteria were enriched for strains with AHL-degrading capabilities. Three isolates belonging to the genera Acinetobacter (GG2), Burkholderia (GG4) and Klebsiella (Se14) were identified and selected for further study. Strains GG2 and Se14 exhibited the broadest spectrum of AHL-degrading activities via lactonolysis while GG4 reduced 3-oxo-AHLs to the corresponding 3-hydroxy compounds. In GG2 and GG4, QQ was found to co-exist with AHL-dependent QS and GG2 was shown to inactivate both self-generated and exogenously supplied AHLs. GG2, GG4 and Se14 were each able to attenuate virulence factor production in both human and plant pathogens. Collectively our data show that ginger rhizosphere bacteria which make and degrade a wide range of AHLs are likely to play a collective role in determining the QS-dependent phenotype of a polymicrobial community.

191 citations


Journal ArticleDOI
TL;DR: There was excellent correlation between the broth microdilution assay and detection of antibiotic resistance genes by the multiplex PCR, in the determination of S. aureus resistance to erythromycin, gentamicin, methicillin and tetracycline.
Abstract: Staphylococcus aureus is an important pathogen causing a wide range of infections in the hospital and community setting. In order to have adequate information for treatment of S. aureus infections, it is crucial to understand the trends in the antibiotic-resistance patterns. In addition, the occurrence and changes in types of S. aureus, clonal identities, and their geographic spread is essential for the establishment of adequate infection control programmes. In this study, 68 S. aureus isolates obtained from clinical and non-clinical sources in Nigeria between January and April 2009 were characterized using phenotypic and molecular methods. All the S. aureus isolates were susceptible to teicoplanin, vancomycin, phosphomycin, fusidic acid, rifampicin, daptomycin, mupirocin, linezolid and tigecycline. Sixteen percent of the isolates were resistant to oxacillin, while 55% and 72% of isolates were resistant to tetracycline and trimethoprim/sulphamethoxazole (cotrimoxazole), respectively (Table 1). There was excellent correlation between the broth microdilution assay and detection of antibiotic resistance genes by the multiplex PCR, in the determination of S. aureus resistance to erythromycin, gentamicin, methicillin and tetracycline. A total of 28 spa types were identified in the study, and the predominant spa type among the methicillin-susceptible S. aureus (MSSA) isolates was t084 (13 isolates). The t037-ST241-SCCmecIII type was the only clone identified in Maiduguri (North-East Nigeria) while in South-West Nigeria, diversity among the MRSA isolates (t451-ST8-SCCmecV; t008-ST94-SCCmecIV; t002-ST5-SCCmecV; t064-ST8-SCCmecV) was observed. The toxin genes seh and etd were detected in isolates affiliated with clonal complexes CC1, CC80 and sequence type ST25, respectively. The proportion of PVL-positive isolates among MSSA was high (40%). Most of the PVL-positive MSSA isolates were obtained from wound infections and associated with clonal complexes CC1, CC30, CC121 and with sequence type ST152. The use of phenotypic and molecular methods provided useful information on antibiotic resistance and molecular diversity of S. aureus in Nigeria. The high proportion of PVL-positive MSSA isolates affiliated to various clonal complexes and detected in all the health institutions is a major concern, both as a source of severe infections and as a potential reservoir that could lead to the emergence of PVL-positive MRSA. This study presents the first baseline information on the nature of the antibiotic resistance genes from S. aureus isolates in Nigeria. There is the need to curtail the spread and establishment of MRSA and PVL-positive MSSA clones in Nigerian health care institutions.

186 citations


Journal ArticleDOI
TL;DR: The oral administration of L. casei CRL 431 induces variations in the cytokine profile and in the TLRs expression previous and also after the challenge with S. Typhimurium, providing an alternative way to reduce the severity of the infection.
Abstract: Diarrheal infections caused by Salmonella, are one of the major causes of childhood morbidity and mortality in developing countries. Salmonella causes various diseases that range from mild gastroenteritis to enteric fever, depending on the serovar involved, infective dose, species, age and immune status of the host. Probiotics are proposed as an attractive alternative possibility in the prevention against this pathogen infection. Previously we demonstrated that continuous Lactobacillus casei CRL 431 administration to BALB/c mice before and after challenge with Salmonella enterica serovar Typhimurium (S. Typhimurium) decreased the severity of Salmonella infection. The aim of the present work was to deep into the knowledge about how this probiotic bacterium exerts its effect, by assessing its impact on the expression and secretion of pro-inflammatory (TNFα, IFNγ) and anti-inflammatory (IL-10) cytokines in the inductor and effector sites of the gut immune response, and analyzing toll-like receptor (TLR2, TLR4, TLR5 and TLR9) expressions in both healthy and infected mice. Probiotic administration to healthy mice increased the expression of TLR2, TLR4 and TLR9 and improved the production and secretion of TNFα, IFNγ and IL-10 in the inductor sites of the gut immune response (Peyer's patches). Post infection, the continuous probiotic administration, before and after Salmonella challenge, protected the host by modulating the inflammatory response, mainly in the immune effector site of the gut, decreasing TNFα and increasing IFNγ, IL-6 and IL-10 production in the lamina propria of the small intestine. The oral administration of L. casei CRL 431 induces variations in the cytokine profile and in the TLRs expression previous and also after the challenge with S. Typhimurium. These changes show some of the immune mechanisms implicated in the protective effect of this probiotic strain against S. Typhimurium, providing an alternative way to reduce the severity of the infection.

Journal ArticleDOI
TL;DR: It is found that sRNA profiles are altered early in DENV2 infection, and mRNA targets from mitochondrial, transcription/translation, and transport functional categories are affected, indicating that specific cellular processes are affected during DENV infection, such as mitochondrial function and ncRNA levels.
Abstract: Background Small RNA (sRNA) regulatory pathways (SRRPs) are important to anti-viral defence in mosquitoes. To identify critical features of the virus infection process in Dengue serotype 2 (DENV2)-infected Ae. aegypti, we deep-sequenced small non-coding RNAs. Triplicate biological replicates were used so that rigorous statistical metrics could be applied.

Journal ArticleDOI
TL;DR: Comparative proteomic analysis can help understand the differential bacterial properties of lactobacilli and characteristic proteomic profiles can be identified for individual properties that may serve as bacterial biomarkers for the preliminary selection of strains with the best probiotic potential.
Abstract: Lactic acid bacteria are commonly marketed as probiotics based on their putative or proven health-promoting effects. These effects are known to be strain specific but the underlying molecular mechanisms remain poorly understood. Therefore, unravelling the determinants behind probiotic features is of particular interest since it would help select strains that stand the best chance of success in clinical trials. Bile tolerance is one of the most crucial properties as it determines the ability of bacteria to survive in the small intestine, and consequently their capacity to play their functional role as probiotics. In this context, the objective of this study was to investigate the natural protein diversity within the Lactobacillus plantarum species with relation to bile tolerance, using comparative proteomics. Bile tolerance properties of nine L. plantarum strains were studied in vitro. Three of them presenting different bile tolerance levels were selected for comparative proteomic analysis: L. plantarum 299 V (resistant), L. plantarum LC 804 (intermediate) and L. plantarum LC 56 (sensitive). Qualitative and quantitative differences in proteomes were analyzed using two-dimensional electrophoresis (2-DE), tryptic digestion, liquid chromatography-mass spectrometry analysis and database search for protein identification. Among the proteins correlated with differences in the 2-DE patterns of the bacterial strains, 15 have previously been reported to be involved in bile tolerance processes. The effect of a bile exposure on these patterns was investigated, which led to the identification of six proteins that may be key in the bile salt response and adaptation in L. plantarum: two glutathione reductases involved in protection against oxidative injury caused by bile salts, a cyclopropane-fatty-acyl-phospholipid synthase implicated in maintenance of cell envelope integrity, a bile salt hydrolase, an ABC transporter and a F0F1-ATP synthase which participate in the active removal of bile-related stress factors. These results showed that comparative proteomic analysis can help understand the differential bacterial properties of lactobacilli. In the field of probiotic studies, characteristic proteomic profiles can be identified for individual properties that may serve as bacterial biomarkers for the preliminary selection of strains with the best probiotic potential.

Journal ArticleDOI
TL;DR: The functional DNA sequences present in the natural bacterial transposon Tn5 have been methodically edited and refactored for the production of a multi-purpose genetic tool named pBAM1, which allows a range of manipulations in the genome of Gram-negative bacteria.
Abstract: Background Since publication in 1977 of plasmid pBR322, many breakthroughs in Biology have depended on increasingly sophisticated vector platforms for analysis and engineering of given bacterial strains. Although restriction sites impose a certain format in the procedures for assembling cloned genes, every attempt thus far to standardize vector architecture and nomenclature has ended up in failure. While this state of affairs may still be tolerable for traditional one-at-a-time studies of single genes, the onset of systems and synthetic biology calls for a simplification -along with an optimization- of the currently unwieldy pool of genetic tools.

Journal ArticleDOI
TL;DR: These results demonstrate dramatic genome evolution within a species, especially in likely host interaction genes and suggest a model of adaptive evolution through proteome diversification and selection through modulation of translational fidelity.
Abstract: The genome of Helicobacter pylori, an oncogenic bacterium in the human stomach, rapidly evolves and shows wide geographical divergence. The high incidence of stomach cancer in East Asia might be related to bacterial genotype. We used newly developed comparative methods to follow the evolution of East Asian H. pylori genomes using 20 complete genome sequences from Japanese, Korean, Amerind, European, and West African strains. A phylogenetic tree of concatenated well-defined core genes supported divergence of the East Asian lineage (hspEAsia; Japanese and Korean) from the European lineage ancestor, and then from the Amerind lineage ancestor. Phylogenetic profiling revealed a large difference in the repertoire of outer membrane proteins (including oipA, hopMN, babABC, sabAB and vacA-2) through gene loss, gain, and mutation. All known functions associated with molybdenum, a rare element essential to nearly all organisms that catalyzes two-electron-transfer oxidation-reduction reactions, appeared to be inactivated. Two pathways linking acetyl~CoA and acetate appeared intact in some Japanese strains. Phylogenetic analysis revealed greater divergence between the East Asian (hspEAsia) and the European (hpEurope) genomes in proteins in host interaction, specifically virulence factors (tipα), outer membrane proteins, and lipopolysaccharide synthesis (human Lewis antigen mimicry) enzymes. Divergence was also seen in proteins in electron transfer and translation fidelity (miaA, tilS), a DNA recombinase/exonuclease that recognizes genome identity (addA), and DNA/RNA hybrid nucleases (rnhAB). Positively selected amino acid changes between hspEAsia and hpEurope were mapped to products of cagA, vacA, homC (outer membrane protein), sotB (sugar transport), and a translation fidelity factor (miaA). Large divergence was seen in genes related to antibiotics: frxA (metronidazole resistance), def (peptide deformylase, drug target), and ftsA (actin-like, drug target). These results demonstrate dramatic genome evolution within a species, especially in likely host interaction genes. The East Asian strains appear to differ greatly from the European strains in electron transfer and redox reactions. These findings also suggest a model of adaptive evolution through proteome diversification and selection through modulation of translational fidelity. The results define H. pylori East Asian lineages and provide essential information for understanding their pathogenesis and designing drugs and therapies that target them.

Journal ArticleDOI
TL;DR: Alternative infection models tested here, namely macrophages and Galleria mellonella, are able to distinguish between strains of B. pseudomallei, B. thailandensis and B. oklahomensis and that these differences reflect the observed virulence in murine infection models.
Abstract: Background Burkholderia pseudomallei is the causative agent of melioidosis, a tropical disease of humans with a variable and often fatal outcome. In murine models of infection, different strains exhibit varying degrees of virulence. In contrast, two related species, B. thailandensis and B. oklahomensis, are highly attenuated in mice. Our aim was to determine whether virulence in mice is reflected in macrophage or wax moth larvae (Galleria mellonella) infection models.

Journal ArticleDOI
TL;DR: The OI-122 encoded nleB gene was found to be most closely associated with Cluster 1 strains and may serve as a diagnostic tool for the identification of virulent EHEC and EPEC seropathotypes.
Abstract: Enterohaemorrhagic E. coli (EHEC) can cause severe disease such as bloody diarrhoea and haemolytic uraemic syndrome in humans. Besides production of Shiga toxins, the presence of LEE (eae-gene) and non-LEE (nle) encoded effector genes harboured on O-islands OI-122, OI-71 and OI-57 is associated with EHEC virulence and their frequency in outbreaks. Genes encoded by the EHEC-plasmid are putative virulence markers of EHEC. EHEC-plasmids, LEE and non-LEE effector genes have also been detected in some strains of enteropathogenic E. coli (EPEC). The objective of this study was to analyze the relationship between EHEC and EPEC for virulence genes encoded by genomic O-islands and by the EHEC-plasmids. Nle genes ent/espL2, nleB and nleE (OI-122), nleA, nleF and nleH1-2 (OI-71), nleG5-2 and nleG6-2 (OI-57), espK (CP-933N) and the EHEC-plasmid encoded genes ehxA, espP, etpD and katP were searched in 73 typical and in 235 atypical enteropathogenic E. coli (EPEC) strains. Typical and atypical EPEC each fall into two clusters. Cluster 1 typical (n = 46) and atypical (n = 129) EPEC strains were characterized by the presence of OI-122 encoded genes and grouped together with 64 investigated EHEC strains. Cluster 2 typical (n = 27) and atypical (n = 106) strains grouped together with 52 LEE-negative, Shiga toxin-producing E. coli (STEC) and with 21 apathogenic E. coli strains. Typical EPEC Cluster 1 strains belonged to serotypes frequently involved in severe illness and outbreaks in children (O111:H2, O114:H2, O55:H6, O127:H6 and O142:H6). Atypical EPEC Cluster 1 strains were characterized by serotypes related to EHEC (O26:H11, O55:H7, O145:H28, O103:H2 and O103:H25). The OI-122 encoded nleB gene was found to be most closely associated with Cluster 1 strains and may serve as a diagnostic tool for the identification of virulent EHEC and EPEC seropathotypes. OI-71 encoded genes nleA, nleF and nleH1-2 are less associated with Cluster 1 strains. EHEC-plasmid, OI-57 and CP-933 associated genes showed only weak similarities with virulent Cluster 1 EHEC and EPEC strains.

Journal ArticleDOI
TL;DR: This study supported the potential use of AKBA in treating S. aureus infections and can be further exploited to evolve potential lead compounds in the discovery of new anti-Gram-positive and anti-biofilm agents.
Abstract: Boswellic acids are pentacyclic triterpenes, which are produced in plants belonging to the genus Boswellia Boswellic acids appear in the resin exudates of the plant and it makes up 25-35% of the resin β-boswellic acid, 11-keto-β-boswellic acid and acetyl-11-keto-β-boswellic acid have been implicated in apoptosis of cancer cells, particularly that of brain tumors and cells affected by leukemia or colon cancer These molecules are also associated with potent antimicrobial activities The present study describes the antimicrobial activities of boswellic acid molecules against 112 pathogenic bacterial isolates including ATCC strains Acetyl-11-keto-β-boswellic acid (AKBA), which exhibited the most potent antibacterial activity, was further evaluated in time kill studies, postantibiotic effect (PAE) and biofilm susceptibility assay The mechanism of action of AKBA was investigated by propidium iodide uptake, leakage of 260 and 280 nm absorbing material assays AKBA was found to be the most active compound showing an MIC range of 2-8 μg/ml against the entire gram positive bacterial pathogens tested It exhibited concentration dependent killing of Staphylococcus aureus ATCC 29213 up to 8 × MIC and also demonstrated postantibiotic effect (PAE) of 48 h at 2 × MIC Furthermore, AKBA inhibited the formation of biofilms generated by S aureus and Staphylococcus epidermidis and also reduced the preformed biofilms by these bacteria Increased uptake of propidium iodide and leakage of 260 and 280 nm absorbing material by AKBA treated cells of S aureus indicating that the antibacterial mode of action of AKBA probably occurred via disruption of microbial membrane structure This study supported the potential use of AKBA in treating S aureus infections AKBA can be further exploited to evolve potential lead compounds in the discovery of new anti-Gram-positive and anti-biofilm agents

Journal ArticleDOI
TL;DR: The results indicate that S. aureus biofilms induce a distinct inflammatory response compared to their planktonic counterparts and could have implications for the formation and persistence of chronic wounds.
Abstract: Many chronic diseases, such as non-healing wounds are characterized by prolonged inflammation and respond poorly to conventional treatment. Bacterial biofilms are a major impediment to wound healing. Persistent infection of the skin allows the formation of complex bacterial communities termed biofilm. Bacteria living in biofilms are phenotypically distinct from their planktonic counterparts and are orders of magnitude more resistant to antibiotics, host immune response, and environmental stress. Staphylococcus aureus is prevalent in cutaneous infections such as chronic wounds and is an important human pathogen. The impact of S. aureus soluble products in biofilm-conditioned medium (BCM) or in planktonic-conditioned medium (PCM) on human keratinocytes was investigated. Proteomic analysis of BCM and PCM revealed differential protein compositions with PCM containing several enzymes involved in glycolysis. Global gene expression of keratinocytes exposed to biofilm and planktonic S. aureus was analyzed after four hours of exposure. Gene ontology terms associated with responses to bacteria, inflammation, apoptosis, chemotaxis, and signal transduction were enriched in BCM treated keratinocytes. Several transcripts encoding cytokines were also upregulated by BCM after four hours. ELISA analysis of cytokines confirmed microarray results at four hours and revealed that after 24 hours of exposure, S. aureus biofilm induced sustained low level cytokine production compared to near exponential increases of cytokines in planktonic treated keratinocytes. The reduction in cytokines produced by keratinocytes exposed to biofilm was accompanied by suppressed phosphorylation of MAPKs. Chemical inhibition of MAPKs did not drastically reduce cytokine production in BCM-treated keratinocytes suggesting that the majority of cytokine production is mediated through MAPK-independent mechanisms. Collectively the results indicate that S. aureus biofilms induce a distinct inflammatory response compared to their planktonic counterparts. The differential gene expression and production of inflammatory cytokines by biofilm and planktonic cultures in keratinocytes could have implications for the formation and persistence of chronic wounds. The formation of a biofilm should be considered in any study investigating host response to bacteria.

Journal ArticleDOI
TL;DR: The phenotypic differences observed between CF and non-CF isolates may imply different selective conditions and persistence mechanisms in a hostile and heterogeneous environment such as CF lung.
Abstract: Background Stenotrophomonas maltophilia is emerging as one of the most frequently found bacteria in cystic fibrosis (CF) patients. In the present study, phenotypic and genotypic traits of a set of 98 isolates of S. maltophilia obtained from clinical (CF and non-CF patients) and environmental sources were comparatively evaluated.

Journal ArticleDOI
TL;DR: The results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose.
Abstract: Background: The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. Results: A time-series analysis of gene expression revealed changes in transcript levels of ~40% of genes (~1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Conclusions: Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products, and nutrient gradients generated through the action of cell-free cellulosomes and, (iii) increase cellular motility for potentially orienting the cells’ movement towards positive environmental signals leading to nutrient sources. Such a coordinated cellular strategy would increase its chances of survival in natural ecosystems where feast and famine conditions are frequently encountered.

Journal ArticleDOI
TL;DR: It is demonstrated that porin MspA plays an important role in the influx of quaternary ammonium compounds and antibiotics and that efflux via the LfrA pump is involved in low-level resistance to several antimicrobial drugs in M. smegmatis.
Abstract: Background Active efflux systems and reduced cell-wall permeability are considered to be the main causes of mycobacterial intrinsic resistance to many antimicrobials. In this study, we have compared the Mycobacterium smegmatis wild-type strain mc2155 with knockout mutants for porins MspA (the main porin of M. smegmatis) and MspC, the efflux pump LfrA (the main efflux pump system of M. smegmatis) and its repressor LfrR for their ability to transport ethidium bromide (EtBr) on a real-time basis. This information was then correlated with minimum inhibitory concentrations (MICs) of several antibiotics in the presence or absence of the efflux inhibitors chlorpromazine, thioridazine and verapamil.

Journal ArticleDOI
TL;DR: This study shows that house flies and German cockroaches in the confined swine production environment likely serve as vectors and/or reservoirs of antibiotic resistant and potentially virulent enterococci and consequently may play an important role in animal and public health.
Abstract: Extensive use of antibiotics as growth promoters in the livestock industry constitutes strong selection pressure for evolution and selection of antibiotic resistant bacterial strains. Unfortunately, the microbial ecology and spread of these bacteria in the agricultural, urban, and suburban environments are poorly understood. Insects such as house flies (Musca domestica) and German cockroaches (Blattella germanica) can move freely between animal waste and food and may play a significant role in the dissemination of antibiotic resistant bacteria within and between animal production farms and from farms to residential settings. Enterococci from the digestive tract of house flies (n = 162), and feces of German cockroaches (n = 83) and pigs (n = 119), collected from two commercial swine farms were isolated, quantified, identified, and screened for antibiotic resistance and virulence. The majority of samples (93.7%) were positive for enterococci with concentrations 4.2 ± 0.7 × 104 CFU/house fly, 5.5 ± 1.1 × 106 CFU/g of cockroach feces, and 3.2 ± 0.8 × 105 CFU/g of pig feces. Among all the identified isolates (n = 639) Enterococcus faecalis was the most common (55.5%), followed by E. hirae (24.9%), E. faecium (12.8%), and E. casseliflavus (6.7%). E. faecalis was most prevalent in house flies and cockroaches, and E. hirae was most common in pig feces. Our data showed that multi-drug (mainly tetracycline and erythromycin) resistant enterococci were common from all three sources and frequently carried antibiotic resistance genes including tet(M) and erm(B) and Tn916/1545 transposon family. E. faecalis frequently harbored virulence factors gelE, esp, and asa1. PFGE analysis of selected E. faecalis and E. faecium isolates demonstrated that cockroaches and house flies shared some of the same enterococcal clones that were detected in the swine manure indicating that insects acquired enterococci from swine manure. This study shows that house flies and German cockroaches in the confined swine production environment likely serve as vectors and/or reservoirs of antibiotic resistant and potentially virulent enterococci and consequently may play an important role in animal and public health.

Journal ArticleDOI
TL;DR: CL is not essential for S. aureus growth under conditions of high salinity, but is necessary for survival under prolonged high-salt stress and for the generation of L-form variants.
Abstract: The ability of staphylococci to grow in a wide range of salt concentrations is well documented. In this study, we aimed to clarify the role of cardiolipin (CL) in the adaptation of Staphylococcus aureus to high salinity. Using an improved extraction method, the analysis of phospholipid composition suggested that CL levels increased slightly toward stationary phase, but that this was not induced by high salinity. Deletion of the two CL synthase genes, SA1155 (cls1) and SA1891 (cls2), abolished CL synthesis. The cls2 gene encoded the dominant CL synthase. In a cls2 deletion mutant, Cls1 functioned under stress conditions, including high salinity. Using these mutants, CL was shown to be unnecessary for growth in either basal or high-salt conditions, but it was critical for prolonged survival in high-salt conditions and for generation of the L-form. CL is not essential for S. aureus growth under conditions of high salinity, but is necessary for survival under prolonged high-salt stress and for the generation of L-form variants.

Journal ArticleDOI
TL;DR: By using a collection of isogenic phage strains, this study was able to investigate the effects of individual phage traits on plaque size, plaque productivity, and average phage concentration in a plaque while holding all other traits constant.
Abstract: The appearance of plaques on a bacterial lawn is one of the enduring imageries in modern day biology. The seeming simplicity of a plaque has invited many hypotheses and models in trying to describe and explain the details of its formation. However, until now, there has been no systematic experimental exploration on how different bacteriophage (phage) traits may influence the formation of a plaque. In this study, we constructed a series of isogenic λ phages that differ in their adsorption rate, lysis timing, or morphology so that we can determine the effects if these changes on three plaque properties: size, progeny productivity, and phage concentration within plaques. We found that the adsorption rate has a diminishing, but negative impact on all three plaque measurements. Interestingly, there exists a concave relationship between the lysis time and plaque size, resulting in an apparent optimal lysis time that maximizes the plaque size. Although suggestive in appearance, we did not detect a significant effect of lysis time on plaque productivity. Nonetheless, the combined effects of plaque size and productivity resulted in an apparent convex relationship between the lysis time and phage concentration within plaques. Lastly, we found that virion morphology also affected plaque size. We compared our results to the available models on plaque size and productivity. For the models in their current forms, a few of them can capture the qualitative aspects of our results, but not consistently in both plaque properties. By using a collection of isogenic phage strains, we were able to investigate the effects of individual phage traits on plaque size, plaque productivity, and average phage concentration in a plaque while holding all other traits constant. The controlled nature of our study allowed us to test several model predictions on plaque size and plaque productivity. It seems that a more realistic theoretical approach to plaque formation is needed in order to capture the complex interaction between phage and its bacterium host in a spatially restricted environment.

Journal ArticleDOI
TL;DR: The data gathered by real-time fluorometric and RT-qPCR assays suggest that S. aureus clinical isolates may be primed to efflux antimicrobial compounds, and underline the contribution of efflux systems for the emergence of high-level resistance.
Abstract: Background Antimicrobial resistance mediated by efflux systems is still poorly characterized in Staphylococcus aureus, despite the description of several efflux pumps (EPs) for this bacterium. In this work we used several methodologies to characterize the efflux activity of 52 S. aureus isolates resistant to ciprofloxacin collected in a hospital in Lisbon, Portugal, in order to understand the role played by these systems in the resistance to fluoroquinolones.

Journal ArticleDOI
TL;DR: This study shows that two out of 27 strains of Lactobacillus examined possess an antimicrobial effect against six species of gas-forming coliforms isolated from colicky infants, which may stimulate new researches to identify which LactOBacillus strains can improve colicky symptoms by acting on coliform's gut colonization.
Abstract: Background: Infantile colic is a common disturb within the first 3 months of life, nevertheless the pathogenesis is incompletely understood and treatment remains an open issue. Intestinal gas production is thought to be one of the causes of abdominal discomfort in infants suffering from colic. However, data about the role of the amount of gas produced by infants’ colonic microbiota and the correlation with the onset of colic symptoms are scanty. The benefit of supplementation with lactobacilli been recently reported but the mechanisms by which they exert their effects have not yet been fully defined. This study was performed to evaluate the interaction between Lactobacillus spp. strains and gas-forming coliforms isolated from stools of colicky infants. Results: Strains of coliforms were isolated from stools of 45 colicky and 42 control breastfed infants in McConkey Agar and identified using PCR with species-specific primers, and the BBL™ Enterotube™ II system for Enterobacteriaceae. Gas-forming capability of coliforms was assessed in liquid cultures containing lactose as sole carbon source. The average count of total coliforms in colicky infants was significantly higher than controls: 5.98 (2.00-8.76) log10 vs 3.90 (2.50-7.10) CFU/g of faeces (p = 0.015). The following strains were identified: Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes, Enterobacter cloacae and Enterococcus faecalis .T hen, 27Lactobacillus strains were tested for their antagonistic effect against coliforms both by halo-forming method and in liquid co-cultures. Lactobacillus delbrueckii subsp.delbrueckii DSM 20074 and L. plantarum MB 456 were able to inhibit all coliforms strains (halo-forming method), also in liquid co-cultures, thus demonstrating an antagonistic activity. Conclusions: This study shows that two out of 27 strains of Lactobacillus examined possess an antimicrobial effect against six species of gas-forming coliforms isolated from colicky infants. Our findings may stimulate new researches to identify which Lactobacillus strains can improve colicky symptoms by acting on coliforms gut colonization.

Journal ArticleDOI
TL;DR: The first flavivirus NS3 and NS5 proteins interaction network was created and the topological features of this network were analysed and proposed that the selective disruption of these newly identified host/virus interactions could represent a novel and attractive therapeutic strategy in treating flaviv virus infections.
Abstract: Background The genus Flavivirus encompasses more than 50 distinct species of arthropod-borne viruses, including several major human pathogens, such as West Nile virus, yellow fever virus, Japanese encephalitis virus and the four serotypes of dengue viruses (DENV type 1-4). Each year, flaviviruses cause more than 100 million infections worldwide, some of which lead to life-threatening conditions such as encephalitis or haemorrhagic fever. Among the viral proteins, NS3 and NS5 proteins constitute the major enzymatic components of the viral replication complex and are essential to the flavivirus life cycle.

Journal ArticleDOI
TL;DR: Thehypervirulent strain R20291 exhibits increased production of and tolerance to p-cresol, which may be a contributory factor to the virulence of this strain and other hypervirulent PCR-ribotype 027 strains.
Abstract: Background: Clostridium difficile is the major cause of antibiotic associated diarrhoea and in recent years its increased prevalence has been linked to the emergence of hypervirulent clones such as the PCR-ribotype 027. Characteristically, C. difficile infection (CDI) occurs after treatment with broad-spectrum antibiotics, which disrupt the normal gut microflora and allow C. difficile to flourish. One of the relatively unique features of C. difficile is its ability to ferment tyrosine to para-cresol via the intermediate para-hydroxyphenylacetate (p-HPA). P-cresol is a phenolic compound with bacteriostatic properties which C. difficile can tolerate and may provide the organism with a competitive advantage over other gut microflora, enabling it to proliferate and cause CDI. It has been proposed that the hpdBCA operon, rarely found in other gut microflora, encodes the enzymes responsible for the conversion of p-HPA to p-cresol. Results: We show that the PCR-ribotype 027 strain R20291 quantitatively produced more p-cresol in-vitro and was significantly more tolerant to p-cresol than the sequenced strain 630 (PCR-ribotype 012). Tyrosine conversion to pHPA was only observed under certain conditions. We constructed gene inactivation mutants in the hpdBCA operon in strains R20291 and 630Δerm which curtails their ability to produce p-cresol, confirming the role of these genes in p-cresol production. The mutants were equally able to tolerate p-cresol compared to the respective parent strains, suggesting that tolerance to p-cresol is not linked to its production. Conclusions: C. difficile converts tyrosine to p-cresol, utilising the hpdBCA operon in C. difficile strains 630 and R20291. The hypervirulent strain R20291 exhibits increased production of and tolerance to p-cresol, which may be a contributory factor to the virulence of this strain and other hypervirulent PCR-ribotype 027 strains.

Journal ArticleDOI
TL;DR: This study conducted a detailed study of three outbreaks of dengue virus infection that occurred in years 2007, 2008 and 2009 in Lahore by using molecular techniques such as PCR and nucleotide sequencing of the C-prM gene junction of Dengue virus.
Abstract: Since the first reported outbreak of dengue hemorrhagic fever in Pakistan, several mini outbreaks have erupted in the region. Dengue virus serotype 3 (DEN-3) was first documented in 2005 outbreak in Karachi. Reports show that serotype 3 is prevalent in Lahore since 2008. Serotype 2 (DEN-2) is the major circulating serotype in Pakistan as it is documented since 1994. We have conducted a detailed study of three outbreaks of dengue virus infection that occurred in years 2007, 2008 and 2009 in Lahore by using molecular techniques such as PCR and nucleotide sequencing of the C-prM gene junction of Dengue virus. Through the analysis of 114 serum samples collected over the period of three years (2007-2009), total 20 patients were found to be infected with dengue virus. In year 2007, four were positive for serotype 2 and one sample was positive for serotype DEN-3. In 2008, five samples had concurrent infection with serotypes DEN-2 and DEN-3 while three samples were infected only with serotype DEN-2. In year 2009, one sample had concurrent infection with serotypes DEN-2 and DEN-3 while six were positive for serotype DEN-2 only. Our study showed that serotype DEN-2 was dominant in positive samples of dengue virus infection collected during the period of three years (2007-2009). The other serotype present was serotype DEN-3. Genotypes of serotype DEN-2 and serotype DEN-3 were subtype IV and subtype III, respectively.