scispace - formally typeset
Search or ask a question
Institution

University of Amsterdam

EducationAmsterdam, Noord-Holland, Netherlands
About: University of Amsterdam is a education organization based out in Amsterdam, Noord-Holland, Netherlands. It is known for research contribution in the topics: Population & Context (language use). The organization has 59309 authors who have published 140894 publications receiving 5984137 citations. The organization is also known as: UvA & Universiteit van Amsterdam.


Papers
More filters
MonographDOI
01 Jan 2007
TL;DR: In this paper, the authors consider the CA Paradigm and introduce the CA Research CA and Different Disciplinary Agendas, and present several ideas and evidence in CA research CA and different disciplinary agendas.
Abstract: PART ONE: CONSIDERING CA Introducing the CA Paradigm Three Exemplary Studies Ideas and Evidence in CA Research CA and Different Disciplinary Agendas PART TWO: PRODUCING DATA Collecting/Producing Recordings Transcribing Talk-in-Interaction PART THREE: ANALYSING DATA Analytic Strategies Elaborating the Analysis PART FOUR: APPLIED CA Institutional Interaction Local Rationalities, Formal Knowledge and Critical Concerns

1,070 citations

Journal ArticleDOI
07 Aug 2020-Science
TL;DR: It is shown that the patients had strong immune responses against the viral spike protein, a complex that binds to receptors on the host cell, and monoclonal antibodies isolated here are promising candidates for COVID-19 treatment and prevention.
Abstract: The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a large impact on global health, travel, and economy. Therefore, preventative and therapeutic measures are urgently needed. Here, we isolated monoclonal antibodies from three convalescent coronavirus disease 2019 (COVID-19) patients using a SARS-CoV-2 stabilized prefusion spike protein. These antibodies had low levels of somatic hypermutation and showed a strong enrichment in VH1-69, VH3-30-3, and VH1-24 gene usage. A subset of the antibodies was able to potently inhibit authentic SARS-CoV-2 infection at a concentration as low as 0.007 micrograms per milliliter. Competition and electron microscopy studies illustrate that the SARS-CoV-2 spike protein contains multiple distinct antigenic sites, including several receptor-binding domain (RBD) epitopes as well as non-RBD epitopes. In addition to providing guidance for vaccine design, the antibodies described here are promising candidates for COVID-19 treatment and prevention.

1,070 citations

Journal ArticleDOI
TL;DR: Oral edoxaban was noninferior to subcutaneous dalteparin with respect to the composite outcome of recurrent venous thromboembolism or major bleeding during the 12 months after randomization, regardless of treatment duration.
Abstract: Background Low-molecular-weight heparin is the standard treatment for cancer-associated venous thromboembolism. The role of treatment with direct oral anticoagulant agents is unclear. Methods In this open-label, noninferiority trial, we randomly assigned patients with cancer who had acute symptomatic or incidental venous thromboembolism to receive either low-molecular-weight heparin for at least 5 days followed by oral edoxaban at a dose of 60 mg once daily (edoxaban group) or subcutaneous dalteparin at a dose of 200 IU per kilogram of body weight once daily for 1 month followed by dalteparin at a dose of 150 IU per kilogram once daily (dalteparin group). Treatment was given for at least 6 months and up to 12 months. The primary outcome was a composite of recurrent venous thromboembolism or major bleeding during the 12 months after randomization, regardless of treatment duration. Results Of the 1050 patients who underwent randomization, 1046 were included in the modified intention-to-treat analys...

1,064 citations

Journal ArticleDOI
TL;DR: Although the very public problems experienced by psychology over this 2-year period are embarrassing to those of us working in the field, some have found comfort in the fact that, over the same period, similar concerns have been arising across the scientific landscape.
Abstract: Is there currently a crisis of confidence in psychological science reflecting an unprecedented level of doubt among practitioners about the reliability of research findings in the field? It would certainly appear that there is. These doubts emerged and grew as a series of unhappy events unfolded in 2011: the Diederik Stapel fraud case (see Stroebe, Postmes, & Spears, 2012, this issue), the publication in a major social psychology journal of an article purporting to show evidence of extrasensory perception (Bem, 2011) followed by widespread public mockery (see Galak, LeBoeuf, Nelson, & Simmons, in press; Wagenmakers, Wetzels, Borsboom, & van der Maas, 2011), reports by Wicherts and colleagues that psychologists are often unwilling or unable to share their published data for reanalysis (Wicherts, Bakker, & Molenaar, 2011; see also Wicherts, Borsboom, Kats, & Molenaar, 2006), and the publication of an important article in Psychological Science showing how easily researchers can, in the absence of any real effects, nonetheless obtain statistically significant differences through various questionable research practices (QRPs) such as exploring multiple dependent variables or covariates and only reporting these when they yield significant results (Simmons, Nelson, & Simonsohn, 2011). For those psychologists who expected that the embarrassments of 2011 would soon recede into memory, 2012 offered instead a quick plunge from bad to worse, with new indications of outright fraud in the field of social cognition (Simonsohn, 2012), an article in Psychological Science showing that many psychologists admit to engaging in at least some of the QRPs examined by Simmons and colleagues (John, Loewenstein, & Prelec, 2012), troubling new meta-analytic evidence suggesting that the QRPs described by Simmons and colleagues may even be leaving telltale signs visible in the distribution of p values in the psychological literature (Masicampo & Lalande, in press; Simonsohn, 2012), and an acrimonious dust-up in science magazines and blogs centered around the problems some investigators were having in replicating well-known results from the field of social cognition (Bower, 2012; Yong, 2012). Although the very public problems experienced by psychology over this 2-year period are embarrassing to those of us working in the field, some have found comfort in the fact that, over the same period, similar concerns have been arising across the scientific landscape (triggered by revelations that will be described shortly). Some of the suspected causes of unreplicability, such as publication bias (the tendency to publish only positive findings) have been discussed for years; in fact, the phrase file-drawer problem was first coined by a distinguished psychologist several decades ago (Rosenthal, 1979). However, many have speculated that these problems have been exacerbated in recent years as academia reaps the harvest of a hypercompetitive academic climate and an incentive scheme that provides rich rewards for overselling one’s work and few rewards at all for caution and circumspection (see Giner-Sorolla, 2012, this issue). Equally disturbing, investigators seem to be replicating each others’ work even less often than they did in the past, again presumably reflecting an incentive scheme gone askew (a point discussed in several articles in this issue, e.g., Makel, Plucker, & Hegarty, 2012). The frequency with which errors appear in the psychological literature is not presently known, but a number of facts suggest it might be disturbingly high. Ioannidis (2005) has shown through simple mathematical modeling that any scientific field that ignores replication can easily come to the miserable state wherein (as the title of his most famous article puts it) “most published research findings are false” (see also Ioannidis, 2012, this issue, and Pashler & Harris, 2012, this issue). Meanwhile, reports emerging from cancer research have made such grim scenarios seem more plausible: In 2012, several large pharmaceutical companies revealed that their efforts to replicate exciting preclinical findings from published academic studies in cancer biology were only rarely verifying the original results (Begley & Ellis, 2012; see also Osherovich, 2011; Prinz, Schlange, & Asadullah, 2011).

1,063 citations

Journal ArticleDOI
TL;DR: This work describes another lineage-negative CD127+CD161+ ILC population found in humans that expressed the chemoattractant receptor CRTH2 and identifies a unique type of human ILC that provides an innate source of T helper type 2 (TH2) cytokines.
Abstract: Innate lymphoid cells (ILCs) are emerging as a family of effectors and regulators of innate immunity and tissue remodeling. Interleukin 22 (IL-22)- and IL-17-producing ILCs, which depend on the transcription factor RORγt, express CD127 (IL-7 receptor α-chain) and the natural killer cell marker CD161. Here we describe another lineage-negative CD127(+)CD161(+) ILC population found in humans that expressed the chemoattractant receptor CRTH2. These cells responded in vitro to IL-2 plus IL-25 and IL-33 by producing IL-13. CRTH2(+) ILCs were present in fetal and adult lung and gut. In fetal gut, these cells expressed IL-13 but not IL-17 or IL-22. There was enrichment for CRTH2(+) ILCs in nasal polyps of chronic rhinosinusitis, a typical type 2 inflammatory disease. Our data identify a unique type of human ILC that provides an innate source of T helper type 2 (T(H)2) cytokines.

1,062 citations


Authors

Showing all 59759 results

NameH-indexPapersCitations
Richard A. Flavell2311328205119
Scott M. Grundy187841231821
Stuart H. Orkin186715112182
Kenneth C. Anderson1781138126072
David A. Weitz1781038114182
Dorret I. Boomsma1761507136353
Brenda W.J.H. Penninx1701139119082
Michael Kramer1671713127224
Nicholas J. White1611352104539
Lex M. Bouter158767103034
Wolfgang Wagner1562342123391
Jerome I. Rotter1561071116296
David Cella1561258106402
David Eisenberg156697112460
Naveed Sattar1551326116368
Network Information
Related Institutions (5)
University College London
210.6K papers, 9.8M citations

94% related

University of Edinburgh
151.6K papers, 6.6M citations

94% related

University of Pennsylvania
257.6K papers, 14.1M citations

94% related

Columbia University
224K papers, 12.8M citations

94% related

University of Pittsburgh
201K papers, 9.6M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023198
2022699
20219,646
20208,532
20197,821
20186,407