scispace - formally typeset
Search or ask a question
Institution

University of Arizona

EducationTucson, Arizona, United States
About: University of Arizona is a education organization based out in Tucson, Arizona, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 63805 authors who have published 155998 publications receiving 6854915 citations. The organization is also known as: UA & U of A.
Topics: Population, Galaxy, Stars, Redshift, Star formation


Papers
More filters
Book ChapterDOI
01 Jan 1984

3,213 citations

Journal ArticleDOI
TL;DR: The Spitzer Space Telescope, NASA's great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit as mentioned in this paper.
Abstract: The Spitzer Space Telescope, NASA's Great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit. Spitzer combines the intrinsic sensitivity achievable with a cryogenic telescope in space with the great imaging and spectroscopic power of modern detector arrays to provide the user community with huge gains in capability for exploration of the cosmos in the infrared. The observatory systems are largely performing as expected, and the projected cryogenic lifetime is in excess of 5 years. This paper summarizes the on-orbit scientific, technical, and operational performance of Spitzer. Subsequent papers in this special issue describe the Spitzer instruments in detail and highlight many of the exciting scientific results obtained during the first 6 months of the Spitzer mission.

3,177 citations

Journal ArticleDOI
TL;DR: A diagnostically interesting decomposition of NSE is presented, which facilitates analysis of the relative importance of its different components in the context of hydrological modelling, and it is shown how model calibration problems can arise due to interactions among these components.

3,147 citations

Book
Georges Aad1, E. Abat2, Jalal Abdallah3, Jalal Abdallah4  +3029 moreInstitutions (164)
23 Feb 2020
TL;DR: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper, where a brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.
Abstract: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

3,111 citations

Journal ArticleDOI
TL;DR: Two novel scheduling algorithms for a bounded number of heterogeneous processors with an objective to simultaneously meet high performance and fast scheduling time are presented, called the Heterogeneous Earliest-Finish-Time (HEFT) algorithm and the Critical-Path-on-a-Processor (CPOP) algorithm.
Abstract: Efficient application scheduling is critical for achieving high performance in heterogeneous computing environments. The application scheduling problem has been shown to be NP-complete in general cases as well as in several restricted cases. Because of its key importance, this problem has been extensively studied and various algorithms have been proposed in the literature which are mainly for systems with homogeneous processors. Although there are a few algorithms in the literature for heterogeneous processors, they usually require significantly high scheduling costs and they may not deliver good quality schedules with lower costs. In this paper, we present two novel scheduling algorithms for a bounded number of heterogeneous processors with an objective to simultaneously meet high performance and fast scheduling time, which are called the Heterogeneous Earliest-Finish-Time (HEFT) algorithm and the Critical-Path-on-a-Processor (CPOP) algorithm. The HEFT algorithm selects the task with the highest upward rank value at each step and assigns the selected task to the processor, which minimizes its earliest finish time with an insertion-based approach. On the other hand, the CPOP algorithm uses the summation of upward and downward rank values for prioritizing tasks. Another difference is in the processor selection phase, which schedules the critical tasks onto the processor that minimizes the total execution time of the critical tasks. In order to provide a robust and unbiased comparison with the related work, a parametric graph generator was designed to generate weighted directed acyclic graphs with various characteristics. The comparison study, based on both randomly generated graphs and the graphs of some real applications, shows that our scheduling algorithms significantly surpass previous approaches in terms of both quality and cost of schedules, which are mainly presented with schedule length ratio, speedup, frequency of best results, and average scheduling time metrics.

2,961 citations


Authors

Showing all 64388 results

NameH-indexPapersCitations
Simon D. M. White189795231645
Julie E. Buring186950132967
David H. Weinberg183700171424
Richard Peto183683231434
Xiaohui Fan183878168522
Dennis S. Charney179802122408
Daniel J. Eisenstein179672151720
David Haussler172488224960
Carlos S. Frenk165799140345
Jian-Kang Zhu161550105551
Tobin J. Marks1591621111604
Todd Adams1541866143110
Jane A. Cauley15191499933
Wei Zheng1511929120209
Daniel L. Schacter14959290148
Network Information
Related Institutions (5)
University of California, San Diego
204.5K papers, 12.3M citations

91% related

Cornell University
235.5K papers, 12.2M citations

90% related

University of Washington
305.5K papers, 17.7M citations

90% related

University of Michigan
342.3K papers, 17.6M citations

90% related

Harvard University
530.3K papers, 38.1M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023205
2022994
20217,006
20207,325
20196,716
20186,375