scispace - formally typeset
Search or ask a question
Institution

University of Bergen

EducationBergen, Hordaland, Norway
About: University of Bergen is a education organization based out in Bergen, Hordaland, Norway. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 17106 authors who have published 52492 publications receiving 2009844 citations. The organization is also known as: Universitetet i Bergen & Universitas Bergensis.


Papers
More filters
Journal ArticleDOI
10 Mar 2016-Nature
TL;DR: This study provides a quantitative methodology for assessing the relative response rate of ecosystems—be they natural or with a strong anthropogenic signature—to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.
Abstract: The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems--be they natural or with a strong anthropogenic signature--to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

791 citations

Journal ArticleDOI
Bernard Aubert, A. Bazan, A. Boucham, D. Boutigny  +816 moreInstitutions (68)
TL;DR: BABAR as discussed by the authors is a detector for the SLAC PEP-II asymmetric e+e-B Factory operating at the upsilon 4S resonance, which allows comprehensive studies of CP-violation in B-meson decays.
Abstract: BABAR, the detector for the SLAC PEP-II asymmetric e+e- B Factory operating at the upsilon 4S resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. Charged particle tracks are measured in a multi-layer silicon vertex tracker surrounded by a cylindrical wire drift chamber. Electromagentic showers from electrons and photons are detected in an array of CsI crystals located just inside the solenoidal coil of a superconducting magnet. Muons and neutral hadrons are identified by arrays of resistive plate chambers inserted into gaps in the steel flux return of the magnet. Charged hadrons are identified by dE/dx measurements in the tracking detectors and in a ring-imaging Cherenkov detector surrounding the drift chamber. The trigger, data acquisition and data-monitoring systems, VME- and network-based, are controlled by custom-designed online software. Details of the layout and performance of the detector components and their associated electronics and software are presented.

789 citations

Journal ArticleDOI
TL;DR: In a systematic review and meta‐analysis, celiac disease is found to be reported worldwide and there is a need for population‐based prevalence studies in many countries.

782 citations

Journal ArticleDOI
TL;DR: It is shown that one intronic SNP in PDCD1 is associated with development of SLE in Europeans, and this SNP alters a binding site for the runt-related transcription factor 1 (RUNX1) located in an intronic enhancer, suggesting a mechanism through which it can contribute to the development ofSLE in humans.
Abstract: Systemic lupus erythematosus (SLE, OMIM 152700) is a complex autoimmune disease that affects 0.05% of the Western population, predominantly women. A number of susceptibility loci for SLE have been suggested in different populations, but the nature of the susceptibility genes and mutations is yet to be identified. We previously reported a susceptibility locus (SLEB2) for Nordic multi-case families. Within this locus, the programmed cell death 1 gene (PDCD1, also called PD-1) was considered the strongest candidate for association with the disease. Here, we analyzed 2,510 individuals, including members of five independent sets of families as well as unrelated individuals affected with SLE, for single-nucleotide polymorphisms (SNPs) that we identified in PDCD1. We show that one intronic SNP in PDCD1 is associated with development of SLE in Europeans (found in 12% of affected individuals versus 5% of controls; P = 0.00001, r.r. (relative risk) = 2.6) and Mexicans (found in 7% of affected individuals versus 2% of controls; P = 0.0009, r.r. = 3.5). The associated allele of this SNP alters a binding site for the runt-related transcription factor 1 (RUNX1, also called AML1) located in an intronic enhancer, suggesting a mechanism through which it can contribute to the development of SLE in humans.

775 citations


Authors

Showing all 17370 results

NameH-indexPapersCitations
Stephen V. Faraone1881427140298
Patrick O. Brown183755200985
Anil K. Jain1831016192151
Marc Weber1672716153502
Johan Auwerx15865395779
Leif Groop158919136056
Charles M. Perou156573202951
Bart Staels15282486638
Zhenwei Yang150956109344
G. Eigen1482188117450
Thomas Lohse1481237101631
Marco Costa1461458105096
Timothy P. Hughes14583191357
Hermann Kolanoski145127996152
Kjell Fuxe142147989846
Network Information
Related Institutions (5)
University of Copenhagen
149.7K papers, 5.9M citations

96% related

Utrecht University
139.3K papers, 6.2M citations

92% related

University of Amsterdam
140.8K papers, 5.9M citations

91% related

Karolinska Institutet
121.1K papers, 6M citations

91% related

University of Washington
305.5K papers, 17.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023149
2022448
20213,229
20203,149
20192,800
20182,648