scispace - formally typeset
Search or ask a question
Institution

University of Jena

EducationJena, Thüringen, Germany
About: University of Jena is a education organization based out in Jena, Thüringen, Germany. It is known for research contribution in the topics: Laser & Population. The organization has 22198 authors who have published 45159 publications receiving 1401514 citations. The organization is also known as: Friedrich-Schiller-Universität Jena & Friedrich Schiller University Jena.


Papers
More filters
Journal ArticleDOI
26 Feb 2016-Science
TL;DR: The atomically well-defined contact allows us to trace the origin of superlubricity, unraveling the role played by ribbon size and elasticity, as well as by surface reconstruction, and pave the way to the scale-up of superLubricity and thus to the realization of frictionless coatings.
Abstract: The state of vanishing friction known as superlubricity has important applications for energy saving and increasing the lifetime of devices. Superlubricity, as detected with atomic force microscopy, appears when sliding large graphite flakes or gold nanoclusters across surfaces, for example. However, the origin of the behavior is poorly understood because of the lack of a controllable nanocontact. We demonstrated the superlubricity of graphene nanoribbons when sliding on gold with a joint experimental and computational approach. The atomically well-defined contact allows us to trace the origin of superlubricity, unraveling the role played by ribbon size and elasticity, as well as by surface reconstruction. Our results pave the way to the scale-up of superlubricity and thus to the realization of frictionless coatings.

303 citations

Journal ArticleDOI
TL;DR: This study uses scanning electron and fluorescence microscopy, adhesion, invasion and damage assays, fungal mutants and a set of fungal and host cell inhibitors to investigate the interactions of C. albicans with oral epithelial cells and enterocytes, demonstrating that epithelial Cells differ in their susceptibility to the fungus.
Abstract: The human pathogenic fungus Candida albicans can cause systemic infections by invading epithelial barriers to gain access to the bloodstream. One of the main reservoirs of C. albicans is the gastrointestinal tract and systemic infections predominantly originate from this niche. In this study, we used scanning electron and fluorescence microscopy, adhesion, invasion and damage assays, fungal mutants and a set of fungal and host cell inhibitors to investigate the interactions of C. albicans with oral epithelial cells and enterocytes. Our data demonstrate that adhesion, invasion and damage by C. albicans depend not only on fungal morphology and activity, but also on the epithelial cell type and the differentiation stage of the epithelial cells, indicating that epithelial cells differ in their susceptibility to the fungus. C. albicans can invade epithelial cells by induced endocytosis and/or active penetration. However, depending on the host cell faced by the fungus, these routes are exploited to a different extent. While invasion into oral cells occurs via both routes, invasion into intestinal cells occurs only via active penetration.

303 citations

Journal ArticleDOI
TL;DR: Focusing on binary black-hole configurations where the simulations cover roughly two orbits, this work addresses five major issues determining the quality of results: numerical discretization error, finite extraction radius of the radiation signal, physical appropriateness of initial data, gauge choice, and computational performance.
Abstract: We present single and binary black-hole simulations that follow the “moving-puncture” paradigm of simulating black-hole spacetimes without excision, and use “moving boxes” mesh refinement. Focusing on binary black-hole configurations where the simulations cover roughly two orbits, we address five major issues determining the quality of our results: numerical discretization error, finite extraction radius of the radiation signal, physical appropriateness of initial data, gauge choice, and computational performance. We also compare results we have obtained with the BAM code described here with the independent LEAN code.

303 citations

Journal ArticleDOI
TL;DR: Suspensions of bacterial magnetosomes with respect to magnetic losses are investigated in this paper, where specific loss power is determined from hysteresis loops, susceptibility spectra and calorimetry with a maximum value of 960 W/g at 410 kHz and field amplitude 10 KA/m.

302 citations

Journal ArticleDOI
TL;DR: An overview of the known and potential roles of C. albicans dimorphism is provided and the potential benefit of drugs that can inhibit the morphological transition is discussed.
Abstract: The ability to switch between yeast and hyphal growth forms (dimorphism) is one of the most discussed and best investigated virulence attributes of the human pathogenic fungus Candida albicans. Both morphological forms seem to be important for virulence and have distinct functions during the different stages of disease development, including adhesion, invasion, damage, dissemination, immune evasion and host response. In this review, we will provide an overview of the known and potential roles of C. albicans dimorphism and will discuss the potential benefit of drugs that can inhibit the morphological transition.

302 citations


Authors

Showing all 22435 results

NameH-indexPapersCitations
Cornelia M. van Duijn1831030146009
Veikko Salomaa162843135046
Andreas Pfeiffer1491756131080
Bernhard O. Palsson14783185051
Robert Huber13967173557
Joachim Heinrich136130976887
Michael Schmitt1342007114667
Paul D.P. Pharoah13079471338
David Robertson127110667914
Yuri S. Kivshar126184579415
Ulrich S. Schubert122222985604
Andreas Hochhaus11792368685
Werner Seeger114111357464
Th. Henning110103644699
Sascha Husa10736269907
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

95% related

Heidelberg University
119.1K papers, 4.6M citations

93% related

Technische Universität München
123.4K papers, 4M citations

93% related

University of Bern
79.4K papers, 3.1M citations

92% related

Max Planck Society
406.2K papers, 19.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023129
2022452
20212,257
20202,198
20192,062
20181,803