scispace - formally typeset
Search or ask a question

Showing papers by "University of Jena published in 2011"


Journal ArticleDOI
TL;DR: In this paper, a meta-analysis synthesizes empirical findings in order to obtain evidence whether and especially under which circumstances smaller, resource-scarce firms benefit from innovation, and they find that the innovation-performance relationship is context dependent.

1,541 citations


Journal ArticleDOI
TL;DR: Developments towards applications as emissive and photovoltaic materials; as optical limiters; in nanoelectronics, information storage, nanopatterning and sensing; as macromolecular catalysts and artificial enzymes; and as stimuli-responsive materials are illustrated.
Abstract: Synthetic polymers containing metal centres are emerging as an interesting and broad class of easily processable materials with properties and functions that complement those of state-of-the-art organic macromolecular materials. A diverse range of different metal centres can be harnessed to tune macromolecular properties, from transition- and main-group metals to lanthanides. Moreover, the linkages that bind the metal centres can vary almost continuously from strong, essentially covalent bonds that lead to irreversible or 'static' binding of the metal to weak and labile, non-covalent coordination interactions that allow for reversible, 'dynamic' or 'metallosupramolecular', binding. Here we review recent advances and challenges in the field and illustrate developments towards applications as emissive and photovoltaic materials; as optical limiters; in nanoelectronics, information storage, nanopatterning and sensing; as macromolecular catalysts and artificial enzymes; and as stimuli-responsive materials. We focus on materials in which the metal centres provide function; although they can also play a structural role, systems where this is solely their purpose have not been discussed.

877 citations


Journal ArticleDOI
TL;DR: It is concluded that oil contamination from the DH spill had a profound impact on the abundance and community composition of indigenous bacteria in Gulf beach sands, and evidence points to members of the Gammaproteobacteria (Alcanivorax, Marinobacter) and AlphaproteOBacteria (Rhodobacteraceae) as key players in oil degradation there.
Abstract: A significant portion of oil from the recent Deepwater Horizon (DH) oil spill in the Gulf of Mexico was transported to the shoreline, where it may have severe ecological and economic consequences. The objectives of this study were (i) to identify and characterize predominant oil-degrading taxa that may be used as model hydrocarbon degraders or as microbial indicators of contamination and (ii) to characterize the in situ response of indigenous bacterial communities to oil contamination in beach ecosystems. This study was conducted at municipal Pensacola Beach, FL, where chemical analysis revealed weathered oil petroleum hydrocarbon (C 8 to C40) concentrations ranging from 3.1 to 4,500 mg kg 1 in beach sands. A total of 24 bacterial strains from 14 genera were isolated from oiled beach sands and confirmed as oil-degrading microorganisms. Isolated bacterial strains were primarily Gammaproteobacteria, including representatives of genera with known oil degraders (Alcanivorax, Marinobacter, Pseudomonas, and Acinetobacter). Sequence libraries generated from oiled sands revealed phylotypes that showed high sequence identity (up to 99%) to rRNA gene sequences from the oil-degrading bacterial isolates. The abundance of bacterial SSU rRNA gene sequences was 10-fold higher in oiled (0.44 10 7 to 10.2 10 7 copies g 1 ) versus clean (0.024 10 7 to 1.4 10 7 copies g 1 ) sand. Community analysis revealed a distinct response to oil contamination, and SSU rRNA gene abundance derived from the genus Alcanivorax showed the largest increase in relative abundance in contaminated samples. We conclude that oil contamination from the DH spill had a profound impact on the abundance and community composition of indigenous bacteria in Gulf beach sands, and our evidence points to members of the Gammaproteobacteria (Alcanivorax, Marinobacter) and Alphaproteobacteria (Rhodobacteraceae) as key players in oil degradation there. The blowout of the Deepwater Horizon (DH) drilling rig resulted in the world’s largest accidental release of oil into the ocean in recorded history. The equivalent volume of approximately 4.9 million barrels of light crude oil were discharged into the Gulf of Mexico from April to July 2010 (OSAT/ NOAA report [56] and oil budget calculator [43]), and the total hydrocarbon discharge was 40% higher if gaseous hydrocarbons are included (34). A large amount of the discharged oil was transported to the surface and reached the shoreline. Although cleanup efforts have remained aggressive, a substantial portion of the oil remains trapped in coastal ecosystems, especially in benthic areas. Permeable sandy sediments cover large areas of the seafloor in the Gulf of Mexico, including beach ecosystems. Marine sands act as efficient biocatalytic filters that play an important role in the biogeochemical cycles of carbon and nutrients in

779 citations


Journal ArticleDOI
Jo Ann Banks1, Tomoaki Nishiyama2, Mitsuyasu Hasebe3, Mitsuyasu Hasebe4, John L. Bowman5, John L. Bowman6, Michael Gribskov1, Claude W. dePamphilis7, Victor A. Albert8, Naoki Aono3, Tsuyoshi Aoyama3, Tsuyoshi Aoyama4, Barbara A. Ambrose9, Neil W. Ashton10, Michael J. Axtell7, Elizabeth I. Barker10, Michael S. Barker11, Jeffrey L. Bennetzen12, Nicholas D. Bonawitz1, Clint Chapple1, Chaoyang Cheng, Luiz Gustavo Guedes Corrêa13, Michael Dacre14, Jeremy D. DeBarry12, Ingo Dreyer13, Marek Eliáš15, Eric M. Engstrom16, Mark Estelle17, Liang Feng12, Cédric Finet18, Sandra K. Floyd5, Wolf B. Frommer19, Tomomichi Fujita20, Lydia Gramzow21, Michael Gutensohn1, Michael Gutensohn22, Jesper Harholt23, Mitsuru Hattori24, Mitsuru Hattori25, Alexander Heyl26, Tadayoshi Hirai27, Yuji Hiwatashi3, Yuji Hiwatashi4, Masaki Ishikawa, Mineko Iwata, Kenneth G. Karol9, Barbara Koehler13, Uener Kolukisaoglu28, Uener Kolukisaoglu29, Minoru Kubo, Tetsuya Kurata30, Sylvie Lalonde19, Kejie Li1, Ying Li31, Ying Li1, Amy Litt9, Eric Lyons32, Gerard Manning14, Takeshi Maruyama20, Todd P. Michael33, Koji Mikami20, Saori Miyazaki3, Saori Miyazaki34, Shin-Ichi Morinaga3, Shin-Ichi Morinaga25, TakashiMurata4, TakashiMurata3, Bernd Mueller-Roeber35, David R. Nelson36, Mari Obara, Yasuko Oguri, Richard G. Olmstead37, Naoko T. Onodera38, Bent O. Petersen23, Birgit Pils39, Michael J. Prigge17, Stefan A. Rensing40, Diego Mauricio Riaño-Pachón41, Diego Mauricio Riaño-Pachón35, Alison W. Roberts42, Yoshikatsu Sato, Henrik Vibe Scheller43, Henrik Vibe Scheller32, Burkhard Schulz1, Christian Schulz44, Eugene V. Shakirov45, Nakako Shibagaki46, Naoki Shinohara20, Dorothy E. Shippen45, Iben Sørensen47, Iben Sørensen23, Ryo Sotooka20, Nagisa Sugimoto, Mamoru Sugita24, Naomi Sumikawa3, Milos Tanurdzic48, Günter Theißen21, Peter Ulvskov23, Sachiko Wakazuki, Jing-Ke Weng1, Jing-Ke Weng14, William G.T. Willats23, Daniel Wipf49, Paul G. Wolf50, Lixing Yang12, Andreas Zimmer40, Qihui Zhu12, Therese Mitros32, Uffe Hellsten51, Dominique Loqué43, Robert Otillar51, Asaf Salamov51, Jeremy Schmutz51, Harris Shapiro51, Erika Lindquist51, Susan Lucas51, Daniel S. Rokhsar51, Daniel S. Rokhsar32, Igor V. Grigoriev51 
20 May 2011-Science
TL;DR: The genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported, is reported, finding that the transition from a gametophytes- to a sporophyte-dominated life cycle required far fewer new genes than the Transition from a non Seed vascular to a flowering plant.
Abstract: Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.

750 citations


Journal ArticleDOI
Stefan Hild1, M. R. Abernathy1, Fausto Acernese2, Pau Amaro-Seoane3, Nils Andersson4, K. G. Arun5, Fabrizio Barone2, B. Barr1, M. Barsuglia, Mark Beker, N. Beveridge1, S. Birindelli6, Suvadeep Bose7, L. Bosi, S. Braccini8, C. Bradaschia8, Tomasz Bulik9, Enrico Calloni10, Giancarlo Cella8, E. Chassande Mottin, S. Chelkowski11, Andrea Chincarini, James S. Clark12, E. Coccia13, C. Colacino8, J. Colas, A. Cumming1, L. Cunningham1, E. Cuoco, S. L. Danilishin14, Karsten Danzmann3, R. De Salvo15, T. Dent12, R. De Rosa10, L. Di Fiore10, A. Di Virgilio8, M. Doets16, V. Fafone13, Paolo Falferi17, R. Flaminio, J. Franc, F. Frasconi8, Andreas Freise11, D. Friedrich18, Paul Fulda11, Jonathan R. Gair19, Gianluca Gemme, E. Genin, A. Gennai11, A. Giazotto8, Kostas Glampedakis20, Christian Gräf3, M. Granata, Hartmut Grote3, G. M. Guidi21, A. Gurkovsky14, G. D. Hammond1, Mark Hannam12, Jan Harms15, D. Heinert22, Martin Hendry1, Ik Siong Heng1, E. Hennes, J. H. Hough, Sascha Husa23, S. H. Huttner1, G. T. Jones12, F. Y. Khalili14, Keiko Kokeyama11, Kostas D. Kokkotas20, Badri Krishnan3, Tjonnie G. F. Li, M. Lorenzini, H. Lück3, Ettore Majorana, Ilya Mandel24, Vuk Mandic25, M. Mantovani8, I. W. Martin1, Christine Michel, Y. Minenkov13, N. Morgado, S. Mosca10, B. Mours26, Helge Müller-Ebhardt18, P. G. Murray1, Ronny Nawrodt22, Ronny Nawrodt1, John Nelson1, Richard O'Shaughnessy27, Christian D. Ott15, C. Palomba, Angela Delli Paoli, G. Parguez, A. Pasqualetti, R. Passaquieti28, R. Passaquieti8, D. Passuello8, Laurent Pinard, Wolfango Plastino29, Rosa Poggiani8, Rosa Poggiani28, P. Popolizio, Mirko Prato, M. Punturo, P. Puppo, D. S. Rabeling16, P. Rapagnani30, Jocelyn Read31, Tania Regimbau6, H. Rehbein3, S. Reid1, F. Ricci30, F. Richard, A. Rocchi, Sheila Rowan1, A. Rüdiger3, Lucía Santamaría15, Benoit Sassolas, Bangalore Suryanarayana Sathyaprakash12, Roman Schnabel3, C. Schwarz22, Paul Seidel22, Alicia M. Sintes23, Kentaro Somiya15, Fiona C. Speirits1, Kenneth A. Strain1, S. E. Strigin14, P. J. Sutton12, S. P. Tarabrin18, Andre Thüring3, J. F. J. van den Brand16, M. van Veggel1, C. Van Den Broeck, Alberto Vecchio11, John Veitch12, F. Vetrano21, A. Viceré21, S. P. Vyatchanin14, Benno Willke3, Graham Woan1, Kazuhiro Yamamoto 
TL;DR: In this article, a special focus is set on evaluating the frequency band below 10 Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates, including the most relevant fundamental noise contributions.
Abstract: Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope (ET), a third-generation gravitational wave detector, has been proposed in order to fully open up the emerging field of gravitational wave astronomy. In this paper we describe sensitivity models for ET and investigate potential limits imposed by fundamental noise sources. A special focus is set on evaluating the frequency band below 10 Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates. We develop the most accurate sensitivity model, referred to as ET-D, for a third-generation detector so far, including the most relevant fundamental noise contributions.

682 citations


Journal ArticleDOI
TL;DR: Results here suggest that antioxidant supplements that prevent these ROS signals interfere with the health-promoting and life-span-extending capabilities of calorie restriction and physical exercise, and question Harman's Free Radical Theory of Aging.

627 citations


Journal ArticleDOI
TL;DR: The present tutorial review will be focused on the highlights using this method of energy transfer and energy dissipation to motivate researchers to take notice of ball mills as chemical reactors, implementing this technique in everyday laboratory use and pave the ground for future activities in this interdisciplinary field of research.
Abstract: During the last decade numerous protocols have been published using the method of ball milling for synthesis all over the field of organic chemistry. However, compared to other methods leaving their marks on the road to sustainable synthesis (e.g. microwave, ultrasound, ionic liquids) chemistry in ball mills is rather underrepresented in the knowledge of organic chemists. Especially, in the last three years the interest in this technique raised continuously, culminating in several high-quality synthetic procedures covering the whole range of organic synthesis. Thus, the present tutorial review will be focused on the highlights using this method of energy transfer and energy dissipation. The central aim is to motivate researchers to take notice of ball mills as chemical reactors, implementing this technique in everyday laboratory use and thus, pave the ground for future activities in this interdisciplinary field of research.

562 citations


Journal ArticleDOI
TL;DR: The observation and experimental characterization of a threshold-like onset of mode instabilities, i.e. an apparently random relative power content change of different transverse modes, occurring in originally single-mode high-power fiber amplifiers is reported.
Abstract: We report on the observation and experimental characterization of a threshold-like onset of mode instabilities, i.e. an apparently random relative power content change of different transverse modes, occurring in originally single-mode high-power fiber amplifiers. Although the physical origin of this effect is not yet fully understood, we discuss possible explanations. Accordingly, several solutions are proposed in this paper to raise the threshold of this effect.

540 citations


Journal ArticleDOI
TL;DR: These experiments demonstrate ideas initially proposed by von Neumann and Wigner in 1929 and offer new possibilities for integrated optical elements and analogous realizations with cold atoms and optical trapping of particles.
Abstract: We present the experimental observation of bound states in the continuum. Our experiments are carried out in an optical waveguide array structure, where the bound state (guided mode) is decoupled from the continuum by virtue of symmetry only. We demonstrate that breaking the symmetry of the system couples this special bound state to continuum states, leading to radiative losses. These experiments demonstrate ideas initially proposed by von Neumann and Wigner in 1929 and offer new possibilities for integrated optical elements and analogous realizations with cold atoms and optical trapping of particles.

522 citations


Journal ArticleDOI
16 Feb 2011-PLOS ONE
TL;DR: Soil bacterial community composition and diversity of the six analyzed management types showed significant differences between the land use types grassland and forest, and bacterial community structure was largely driven by tree species and soil pH.
Abstract: Background Soil bacteria are important drivers for nearly all biogeochemical cycles in terrestrial ecosystems and participate in most nutrient transformations in soil. In contrast to the importance of soil bacteria for ecosystem functioning, we understand little how different management types affect the soil bacterial community composition. Methodology/Principal Findings We used pyrosequencing-based analysis of the V2-V3 16S rRNA gene region to identify changes in bacterial diversity and community structure in nine forest and nine grassland soils from the Schwabische Alb that covered six different management types. The dataset comprised 598,962 sequences that were affiliated to the domain Bacteria. The number of classified sequences per sample ranged from 23,515 to 39,259. Bacterial diversity was more phylum rich in grassland soils than in forest soils. The dominant taxonomic groups across all samples (>1% of all sequences) were Acidobacteria, Alphaproteobacteria, Actinobacteria, Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Firmicutes. Significant variations in relative abundances of bacterial phyla and proteobacterial classes, including Actinobacteria, Firmicutes, Verrucomicrobia, Cyanobacteria, Gemmatimonadetes and Alphaproteobacteria, between the land use types forest and grassland were observed. At the genus level, significant differences were also recorded for the dominant genera Phenylobacter, Bacillus, Kribbella, Streptomyces, Agromyces, and Defluviicoccus. In addition, soil bacterial community structure showed significant differences between beech and spruce forest soils. The relative abundances of bacterial groups at different taxonomic levels correlated with soil pH, but little or no relationships to management type and other soil properties were found. Conclusions/Significance Soil bacterial community composition and diversity of the six analyzed management types showed significant differences between the land use types grassland and forest. Furthermore, bacterial community structure was largely driven by tree species and soil pH.

497 citations


Journal ArticleDOI
TL;DR: Findings suggest that gain-of-function mutations in DDR2 are important oncogenic events and are amenable to therapy with dasatinib, and provide a rationale for designing clinical trials with the FDA-approved drug d asatinib in patients with lung SCCs.
Abstract: Although genomically targeted therapies have improved outcomes for patients with lung adenocarcinoma, little is known about the genomic alterations that drive squamous cell cancer (SCC) of the lung. Sanger sequencing of the tyrosine kinome identified mutations in the DDR2 kinase gene in 3.8% of lung SCCs and cell lines. Lung SCC cell lines harboring DDR2 mutations were selectively killed by knockdown of DDR2 by RNA interference or by treatment with the multitargeted kinase inhibitor dasatinib. Tumors established from a DDR2 mutant cell line were sensitive to dasatinib in xenograft models. Expression of mutated DDR2 led to cellular transformation that was blocked by dasatinib. A patient with lung SCC that responded to dasatinib and erlotinib treatment harbored a DDR2 kinase domain mutation. These data suggest that gain-of-function mutations in DDR2 are important oncogenic events and are amenable to therapy with dasatinib. Because dasatinib is already approved for use, these findings could be used to rapidly generate clinical trials. Significance: DDR2 mutations are present in 4% of lung SCCs, and DDR2 mutations are associated with sensitivity to dasatinib. These findings provide a rationale for designing clinical trials with the FDA-approved drug dasatinib in patients with lung SCCs. Cancer Discovery; 1(1); 78–89. ©2011 AACR . Read the Commentary on this article by Ohashi and Pao, [p. 23][1] This article is highlighted in the In This Issue feature, [p. 4][2] [1]: /lookup/volpage/1/23?iss=1 [2]: /lookup/volpage/1/4?iss=1

Journal ArticleDOI
TL;DR: In this article, the authors evaluated the antioxidant activity of carotenes and xanthophylls measured by various methods, compared to α-tocopherol, BHA and BHT.

Journal ArticleDOI
TL;DR: This work presents the first analytical inspiral-merger-ringdown gravitational waveforms from binary black holes with nonprecessing spins, that is based on a description of the late-inspiral, merger and ringdown in full general relativity.
Abstract: We present the first analytical inspiral-merger-ringdown gravitational waveforms from binary black holes (BBHs) with nonprecessing spins, that is based on a description of the late-inspiral, merger and ringdown in full general relativity. By matching a post-Newtonian description of the inspiral to a set of numerical-relativity simulations, we obtain a waveform family with a conveniently small number of physical parameters. These waveforms will allow us to detect a larger parameter space of BBH coalescence, including a considerable fraction of precessing binaries in the comparable-mass regime, thus significantly improving the expected detection rates.

Journal ArticleDOI
TL;DR: Based on daily maximum and minimum surface air temperature and precipitation records at 303 meteorological stations in China, the spatial and temporal distributions of indices of climate extremes are analyzed during 1961-2003 as discussed by the authors.
Abstract: Based on daily maximum and minimum surface air temperature and precipitation records at 303 meteorological stations in China, the spatial and temporal distributions of indices of climate extremes are analyzed during 1961–2003. Twelve indices of extreme temperature and six of extreme precipitation are studied. Temperature extremes have high correlations with the annual mean temperature, which shows a significant warming of 0.27°C/decade, indicating that changes in temperature extremes reflect the consistent warming. Stations in northeastern, northern, northwestern China have larger trend magnitudes, which are accordance with the more rapid mean warming in these regions. Countrywide, the mean trends for cold days and cold nights have decreased by −0.47 and −2.06 days/decade respectively, and warm days and warm nights have increased by 0.62 and 1.75 days/decade, respectively. Over the same period, the number of frost days shows a statistically significant decreasing trend of −3.37 days/decade. The length of the growing season and the number of summer days exhibit significant increasing trends at rates of 3.04 and 1.18 days/decade, respectively. The diurnal temperature range has decreased by −0.18°C/decade. Both the annual extreme lowest and highest temperatures exhibit significant warming trends, the former warming faster than the latter. For precipitation indices, regional annual total precipitation shows an increasing trend and most other precipitation indices are strongly correlated with annual total precipitation. Average wet day precipitation, maximum 1-day and 5-day precipitation, and heavy precipitation days show increasing trends, but only the last is statistically significant. A decreasing trend is found for consecutive dry days. For all precipitation indices, stations in the Yangtze River basin, southeastern and northwestern China have the largest positive trend magnitudes, while stations in the Yellow River basin and in northern China have the largest negative magnitudes. This is inconsistent with changes of water vapor flux calculated from NCEP/NCAR reanalysis. Large scale atmospheric circulation changes derived from NCEP/NCAR reanalysis grids show that a strengthening anticyclonic circulation, increasing geopotential height and rapid warming over the Eurasian continent have contributed to the changes in climate extremes in China.

Journal ArticleDOI
TL;DR: Results confirm that prejudice changes systematically with age during childhood but that no developmental trend is found in adolescence, indicating the stronger influence of the social context on prejudice with increasing age.
Abstract: This meta-analysis summarizes 113 research reports worldwide (121 cross-sectional and 7 longitudinal studies) on age differences in ethnic, racial, or national prejudice among children and adolescents. Overall, results indicated a peak in prejudice in middle childhood (5-7 years) followed by a slight decrease until late childhood (8-10 years). In addition to differences for the various operationalizations of prejudice, detailed findings revealed different age-related changes in prejudice toward higher versus lower status out-groups and positive effects of contact opportunities with the out-group on prejudice development. Results confirm that prejudice changes systematically with age during childhood but that no developmental trend is found in adolescence, indicating the stronger influence of the social context on prejudice with increasing age.

Journal Article
TL;DR: In this paper, the authors defined stress as an acute threat to homeostasis, and showed both short and long-term effects on the functions of the gastrointestinal tract, which can lead to the development of a broad array of gastrointestinal disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and other functional gastrointestinal diseases, food antigen-related adverse responses, peptic ulcer and gastroesophageal reflux disease (GERD).
Abstract: Stress, which is defined as an acute threat to homeostasis, shows both short- and long-term effects on the functions of the gastrointestinal tract. Exposure to stress results in alterations of the brain-gut interactions ("brain-gut axis") ultimately leading to the development of a broad array of gastrointestinal disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and other functional gastrointestinal diseases, food antigen-related adverse responses, peptic ulcer and gastroesophageal reflux disease (GERD). The major effects of stress on gut physiology include: 1) alterations in gastrointestinal motility; 2) increase in visceral perception; 3) changes in gastrointestinal secretion; 4) increase in intestinal permeability; 5) negative effects on regenerative capacity of gastrointestinal mucosa and mucosal blood flow; and 6) negative effects on intestinal microbiota. Mast cells (MC) are important effectors of brain-gut axis that translate the stress signals into the release of a wide range of neurotransmitters and proinflammatory cytokines, which may profoundly affect the gastrointestinal physiology. IBS represents the most important gastrointestinal disorder in humans, and is characterized by chronic or recurrent pain associated with altered bowel motility. The diagnostic testing for IBS patients include routine blood tests, stool tests, celiac disease serology, abdominal sonography, breath testing to rule out carbohydrate (lactose, fructose, etc.) intolerance and small intestinal bacterial overgrowth. Colonoscopy is recommended if alarming symptoms are present or to obtain colonic biopsies especially in patients with diarrhoea predominant IBS. The management of IBS is based on a multifactorial approach and includes pharmacotherapy targeted against the predominant symptom, behavioural and psychological treatment, dietary alterations, education, reassurance and effective patient-physician relationship. When evaluating for the stress-induced condition in the upper GI tract, the diagnostic testing includes mainly blood tests and gastroscopy to rule out GERD and peptic ulcer disease. The therapy for these conditions is mainly based on the inhibition of gastric acid by proton pump inhibitors and eradication of Helicobacter pylori-infection. Additionally, melatonin an important mediator of brain gut axis has been shown to exhibit important protective effects against stress-induced lesions in the gastrointestinal tract. Finally, probiotics may profoundly affect the brain-gut interactions ("microbiome-gut-brain axis") and attenuate the development of stress-induced disorders in both the upper and lower gastrointestinal tract. Further studies on the brain-gut axis are needed to open new therapeutic avenues in the future.

Journal ArticleDOI
TL;DR: Synthetic strategies towards π-conjugated terpyridines and their incorporation into advanced supramolecular architectures are evaluated and applications as photoactive species in, e.g., photovoltaic devices, polymer light-emitting diodes and nanotechnology are discussed comprehensively.
Abstract: This critical review summarizes the research progress made in the field of π-conjugated terpyridines within the last decade. Supramolecular materials based on metal ion complexes of 2,2′:6′,2″-terpyridine derivatives have found manifold potential applications—from opto-electronic devices to life science. In this contribution, synthetic strategies towards π-conjugated terpyridines and their incorporation into advanced supramolecular architectures are evaluated. Applications as photoactive species in, e.g., photovoltaic devices, polymer light-emitting diodes (PLEDSs) and nanotechnology are discussed comprehensively (523 references).

Journal ArticleDOI
TL;DR: A semiclassical surface-hopping method which is able to treat arbitrary couplings in molecular systems including all degrees of freedom is presented, in very good agreement with those calculated from exact quantum dynamical simulations.
Abstract: We present a semiclassical surface-hopping method which is able to treat arbitrary couplings in molecular systems including all degrees of freedom. A reformulation of the standard surface-hopping scheme in terms of a unitary transformation matrix allows for the description of interactions like spin−orbit coupling or transitions induced by laser fields. The accuracy of our method is demonstrated in two systems. The first one, consisting of two model electronic states, validates the semiclassical approach in the presence of an electric field. In the second one, the dynamics in the IBr molecule in the presence of spin−orbit coupling after laser excitation is investigated. Due to an avoided crossing that originates from spin−orbit coupling, IBr dissociates into two channels: I + Br(2P3/2) and I + Br*(2P1/2). In both systems, the obtained results are in very good agreement with those calculated from exact quantum dynamical simulations.


Journal ArticleDOI
TL;DR: Nanoprecipitation is a facile, mild, and low energy input process for the preparation of polymeric nanoparticles as discussed by the authors, which can be applied to a variety of applications such as microfluidics, pipetting robots, inkjet printers, and automated analytical instrumentation.
Abstract: Nanoprecipitation is a facile, mild, and low energy input process for the preparation of polymeric nanoparticles. Basic requirements, as well as common techniques for the self-assembly of non-charged and non-amphiphilic macromolecules into defined nanoparticles are described. At present, the primary focus of polymer nanoprecipitation research lays on poly(lactic acid) (PLA) and its copolymer poly(lactic-co-glycolic acid) (PLGA). This contribution thus emphasises on polymers beyond PLA systems, such as common industrial- or tailored lab-made polymers, and their ability to form well-defined, functional nanoparticles for a variety of applications now and in the past two centuries. Moreover, in combination with high-throughput devices such as microfluidics, pipetting robots, inkjet printers, and automated analytical instrumentation, the abilities of nanoprecipitation may broaden tremendously with significant effects on new applications.

Journal ArticleDOI
TL;DR: The generation and near-field imaging of nondiffracting surface waves, plasmonic Airy beams, propagating on the surface of a gold metal film are demonstrated, suggesting novel applications in plAsmonic circuitry and surface optical manipulation.
Abstract: We demonstrate experimentally the generation and near-field imaging of nondiffracting surface waves, plasmonic Airy beams, propagating on the surface of a gold metal film. The Airy plasmons are excited by an engineered nanoscale phase grating, and demonstrate significant beam bending over their propagation. We show that the observed Airy plasmons exhibit self-healing properties, suggesting novel applications in plasmonic circuitry and surface optical manipulation.

Journal ArticleDOI
TL;DR: In this article, a large dataset was collected to form base to repeated soil inventories at 12 CarboEurope sites under different climate and land-use, and with different soil types, where concentrations of organic carbon, bulk density, and fine earth fraction were determined to 60 cm depth at 100 sampling points per site.
Abstract: . Precise determination of changes in organic carbon (OC) stocks is prerequisite to understand the role of soils in the global cycling of carbon and to verify changes in stocks due to management. A large dataset was collected to form base to repeated soil inventories at 12 CarboEurope sites under different climate and land-use, and with different soil types. Concentration of OC, bulk density (BD), and fine earth fraction were determined to 60 cm depth at 100 sampling points per site. We investigated (1) time needed to detect changes in soil OC, assuming future re-sampling of 100 cores; (2) the contribution of different sources of uncertainties to OC stocks; (3) the effect of OC stock calculation on mass rather than volume base for change detection; and (4) the potential use of pedotransfer functions (PTF) for estimating BD in repeated inventories. The period of time needed for soil OC stocks to change strongly enough to be detectable depends on the spatial variability of soil properties, the depth increment considered, and the rate of change. Cropland sites, having small spatial variability, had lower minimum detectable differences (MDD) with 100 sampling points (105 p 28 gC m−2 for the upper 10 cm of the soil) than grassland and forest sites (206 p 64 and 246 p 64 gC m−2 for 0–10 cm, respectively). Expected general trends in soil OC indicate that changes could be detectable after 2–15 yr with 100 samples if changes occurred in the upper 10 cm of stone-poor soils. Error propagation analyses showed that in undisturbed soils with low stone contents, OC concentrations contributed most to OC stock variability while BD and fine earth fraction were more important in upper soil layers of croplands and in stone rich soils. Though the calculation of OC stocks based on equivalent soil masses slightly decreases the chance to detect changes with time at most sites except for the croplands, it is still recommended to account for changing bulk densities with time. Application of PTF for the estimation of bulk densities caused considerable underestimation of total variances of OC stocks if the error associated with the PTF was not accounted for, which rarely is done in soil inventories. Direct measurement of all relevant parameters approximately every 10 yr is recommended for repeated soil OC inventories.

Journal ArticleDOI
TL;DR: Three ontologies created specifically to address the needs of the systems biology community are described, including the Systems Biology Ontology, which provides semantic information about the model components, and the Kinetic Simulation Algorithm Ontology and the Terminology for the Description of Dynamics, which categorizes dynamical features of the simulation results and general systems behavior.
Abstract: The use of computational modeling to describe and analyze biological systems is at the heart of systems biology. Model structures, simulation descriptions and numerical results can be encoded in structured formats, but there is an increasing need to provide an additional semantic layer. Semantic information adds meaning to components of structured descriptions to help identify and interpret them unambiguously. Ontologies are one of the tools frequently used for this purpose. We describe here three ontologies created specifically to address the needs of the systems biology community. The Systems Biology Ontology (SBO) provides semantic information about the model components. The Kinetic Simulation Algorithm Ontology (KiSAO) supplies information about existing algorithms available for the simulation of systems biology models, their characterization and interrelationships. The Terminology for the Description of Dynamics (TEDDY) categorizes dynamical features of the simulation results and general systems behavior. The provision of semantic information extends a model's longevity and facilitates its reuse. It provides useful insight into the biology of modeled processes, and may be used to make informed decisions on subsequent simulation experiments.

Journal ArticleDOI
TL;DR: The broad evidence presented here shows that beyond the predictive power of lipophilicity parameters, the various intermolecular forces they encode allow a mechanistic interpretation of passive drug permeation.
Abstract: In this review, we first summarize the structure and properties of biological membranes and the routes of passive drug transfer through physiological barriers. Lipophilicity is then introduced in terms of the intermolecular interactions it encodes. Finally, lipophilicity indices from isotropic solvent systems and from anisotropic membrane-like systems are discussed for their capacity to predict passive drug permeation across biological membranes such as the intestinal epithelium, the blood-brain barrier (BBB) or the skin. The broad evidence presented here shows that beyond the predictive power of lipophilicity parameters, the various intermolecular forces they encode allow a mechanistic interpretation of passive drug permeation.

Journal ArticleDOI
TL;DR: In this paper, a sample of 7663 young Hipparcos stars within 3 kpc from the Sun was used to investigate the distributions of the peculiar spatial velocity and the peculiar radial velocity as well as the peculiar tangential velocity and its one-dimensional components and obtained runaway star probabilities for each star in the sample.
Abstract: Traditionally, runaway stars are O- and B-type stars with large peculiar velocities. We would like to extend this definition to young stars (up to ≈50 Myr) of any spectral type and to identify those present in the Hipparcos catalogue by applying different selection criteria, such as peculiar space velocities or peculiar one-dimensional velocities. Runaway stars are important for studying the evolution of multiple star systems or star clusters, as well as for identifying the origins of neutron stars. We compile the distances, proper motions, spectral types, luminosity classes,V magnitudes andB −V colours, and we utilize evolutionary models from different authors to obtain star ages. We study a sample of 7663 young Hipparcos stars within 3 kpc from the Sun. The radial velocities are obtained from the literature. We investigate the distributions of the peculiar spatial velocity and the peculiar radial velocity as well as the peculiar tangential velocity and its one-dimensional components and we obtain runaway star probabilities for each star in the sample. In addition, we look for stars that are situated outside any OB association or OB cluster and the Galactic plane as well as stars for which the velocity vector points away from the median velocity vector of neighbouring stars or the surrounding local OB association/cluster (although the absolute velocity might be small). We find a total of 2547 runaway star candidates (with a contamination of normal Population I stars of 20 per cent at most). Thus, after subtracting these 20 per cent, the runaway frequency among young stars is about 27 per cent. We compile a catalogue of runaway stars, which is available via

Journal ArticleDOI
Angela Walter1, Anne März1, Wilm Schumacher1, Petra Rösch1, Jürgen Popp1 
TL;DR: It is demonstrated that the requirements can be fulfilled by measuring ultrasonic busted bacteria by means of microfluidic lab-on-a-chip based SERS and the applied sample preparation, high specificity and reproducibility of the spectra are achieved.
Abstract: The interest in a fast, high specific and reliable detection method for bacteria identification is increasing. We will show that the application of vibrational spectroscopy is feasible for the validation of bacteria in microfluidic devices. For this purpose, reproducible and specific spectral pattern as well as the establishment of large databases are essential for statistical analysis. Therefore, short recording times are beneficial concerning the time aspect of fast identification. We will demonstrate that the requirements can be fulfilled by measuring ultrasonic busted bacteria by means of microfluidic lab-on-a-chip based SERS. With the applied sample preparation, high specificity and reproducibility of the spectra are achieved. Taking advantage of the SERS enhancement, the spectral recording time is reduced to 1 s and a database of 11 200 spectra is established for a model system E. coli including nine different strains. The validation of the bacteria on strain level is achieved accomplishing SVM accuracies of 92%. Within this contribution the potential of our approach of bacterial identification for future application is discussed, focusing on the time-benefit and the combination with other microfluidic applications.

Journal ArticleDOI
03 Feb 2011-Nature
TL;DR: It is demonstrated that the zebrafish kidney probably contains self-renewing nephron stem/progenitor cells, which paves the way to isolating or engineering the equivalent cells in mammals and developing novel renal regenerative therapies.
Abstract: Loss of kidney function underlies many renal diseases. Mammals can partly repair their nephrons (the functional units of the kidney), but cannot form new ones. By contrast, fish add nephrons throughout their lifespan and regenerate nephrons de novo after injury, providing a model for understanding how mammalian renal regeneration may be therapeutically activated. Here we trace the source of new nephrons in the adult zebrafish to small cellular aggregates containing nephron progenitors. Transplantation of single aggregates comprising 10-30 cells is sufficient to engraft adults and generate multiple nephrons. Serial transplantation experiments to test self-renewal revealed that nephron progenitors are long-lived and possess significant replicative potential, consistent with stem-cell activity. Transplantation of mixed nephron progenitors tagged with either green or red fluorescent proteins yielded some mosaic nephrons, indicating that multiple nephron progenitors contribute to a single nephron. Consistent with this, live imaging of nephron formation in transparent larvae showed that nephrogenic aggregates form by the coalescence of multiple cells and then differentiate into nephrons. Taken together, these data demonstrate that the zebrafish kidney probably contains self-renewing nephron stem/progenitor cells. The identification of these cells paves the way to isolating or engineering the equivalent cells in mammals and developing novel renal regenerative therapies.

Journal ArticleDOI
TL;DR: It is suggested that mitochondrial adaptations to pathological and physiological hypertrophy are distinct, and potential mechanisms that might account for these differences are reviewed.
Abstract: Cardiac hypertrophy is a stereotypic response of the heart to increased workload. The nature of the workload increase may vary depending on the stimulus (repetitive, chronic, pressure, or volume overload). If the heart fully adapts to the new loading condition, the hypertrophic response is considered physiological. If the hypertrophic response is associated with the ultimate development of contractile dysfunction and heart failure, the response is considered pathological. Although divergent signalling mechanisms may lead to these distinct patterns of hypertrophy, there is some overlap. Given the close relationship between workload and energy demand, any form of cardiac hypertrophy will impact the energy generation by mitochondria, which are the key organelles for cellular ATP production. Significant changes in the expression of nuclear and mitochondrially encoded transcripts that impact mitochondrial function as well as altered mitochondrial proteome composition and mitochondrial energetics have been described in various forms of cardiac hypertrophy. Here, we review mitochondrial alterations in pathological and physiological hypertrophy. We suggest that mitochondrial adaptations to pathological and physiological hypertrophy are distinct, and we shall review potential mechanisms that might account for these differences.

Journal ArticleDOI
TL;DR: Local AI was closely correlated to beta diversity on larger scales up to the farm and region level, and thereby was an indicator of farm- and region-wide biodiversity losses, and in contrast to expectations, AI does not necessarily homogenize local communities, presumably due to the heterogeneity of farming practices.
Abstract: Effects of agricultural intensification (AI) on biodiversity are often assessed on the plot scale, although processes determining diversity also operate on larger spatial scales. Here, we analyzed the diversity of vascular plants, carabid beetles, and birds in agricultural landscapes in cereal crop fields at the field (n ¼ 1350), farm (n ¼ 270), and European-region (n ¼ 9) scale. We partitioned diversity into its additive components a, b, and c, and assessed the relative contribution of b diversity to total species richness at each spatial scale. AI was determined using pesticide and fertilizer inputs, as well as tillage operations and categorized into low, medium, and high levels. As AI was not significantly related to landscape complexity, we could disentangle potential AI effects on local vs. landscape community homogenization. AI negatively affected the species richness of plants and birds, but not carabid beetles, at all spatial scales. Hence, local AI was closely correlated to b diversity on larger scales up to the farm and region level, and thereby was an indicator of farm- and region-wide biodiversity losses. At the scale of farms (12.83-20.52%) and regions (68.34-80.18%), b diversity accounted for the major part of the total species richness for all three taxa, indicating great dissimilarity in environmental conditions on larger spatial scales. For plants, relative importance of a diversity decreased with AI, while relative importance of b diversity on the farm scale increased with AI for carabids and birds. Hence, and in contrast to our expectations, AI does not necessarily homogenize local communities, presumably due to the heterogeneity of farming practices. In conclusion, a more detailed understanding of AI effects on diversity patterns of various taxa and at multiple spatial scales would contribute to more efficient agri- environmental schemes in agroecosystems.

Journal ArticleDOI
TL;DR: A fiber chirped- pulse amplification system capable of generating nearly transform-limited sub 500 fs pulses with 2.2 mJ pulse energy at 11 W average power and a record peak power of 3.8 GW could be achieved by combining active phase shaping with an efficient reduction of the acquired nonlinear phase.
Abstract: We report on the experimental demonstration of a fiber chirped- pulse amplification system capable of generating nearly transform-limited sub 500 fs pulses with 22 mJ pulse energy at 11 W average power The resulting record peak power of 38 GW could be achieved by combining active phase shaping with an efficient reduction of the acquired nonlinear phase Therefore, we used an Ytterbium-doped large-pitch fiber with a mode field diameter of 105 µm as the main amplifier