scispace - formally typeset
Search or ask a question
Institution

University of Lapland

EducationRovaniemi, Finland
About: University of Lapland is a education organization based out in Rovaniemi, Finland. It is known for research contribution in the topics: Arctic & Context (language use). The organization has 665 authors who have published 1870 publications receiving 39129 citations. The organization is also known as: University of Rovaniemi & Lapin yliopisto.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that moisture limitation, associated with declining SIE, might inhibit the positive effects of warming on shrub growth over a considerable part of the terrestrial Arctic, thereby complicating predictions of vegetation change and future tundra productivity.
Abstract: Arctic sea ice extent (SIE) is declining at an accelerating rate with a wide range of ecological consequences. However, determining sea ice effects on tundra vegetation remains a challenge. In this study, we examined the universality or lack thereof in tundra shrub growth responses to changes in SIE and summer climate across the Pan-Arctic, taking advantage of 23 tundra shrub-ring chronologies from 19 widely distributed sites (56°N to 83°N). We show a clear divergence in shrub growth responses to SIE that began in the mid-1990s, with 39% of the chronologies showing declines and 57% showing increases in radial growth (decreasers and increasers, respectively). Structural equation models revealed that declining SIE was associated with rising air temperature and precipitation for increasers and with increasingly dry conditions for decreasers. Decreasers tended to be from areas of the Arctic with lower summer precipitation and their growth decline was related to decreases in the standardized precipitation evapotranspiration index. Our findings suggest that moisture limitation, associated with declining SIE, might inhibit the positive effects of warming on shrub growth over a considerable part of the terrestrial Arctic, thereby complicating predictions of vegetation change and future tundra productivity.

38 citations

Journal ArticleDOI
TL;DR: It is concluded that circulation of both influenza A virus and avian paramyxovirus-1 in Finnish wild waterfowl was documented and antibody testing in this format seemed to be of low sensitivity.
Abstract: Screening wild birds for viral pathogens has become increasingly important. We tested a screening approach based on blood and cloacal and tracheal swabs collected by hunters to study the prevalence of influenza A, paramyxo-, flavi-, and alphaviruses in Finnish wild waterfowl, which has been previously unknown. We studied 310 blood samples and 115 mixed tracheal and cloacal swabs collected from hunted waterfowl in 2006. Samples were screened by RT-PCR and serologically by hemagglutination inhibition (HI) test or enzyme-linked immunosorbent assay (ELISA) for influenza A (FLUAV), type 1 avian paramyxo-(APMV-1), Sindbis (SINV), West Nile (WNV) and tick-borne encephalitis (TBEV) virus infections. FLUAV RNA was found in 13 tracheal/cloacal swabs and seven strains were isolated. Five blood samples were antibody positive. Six APMV-1 RNA-positive samples were found from which four strains were isolated, while two blood samples were antibody positive. None of the birds were positive for flavivirus RNA but three birds had flavivirus antibodies by HI test. No antibodies to SINV were detected. We conclude that circulation of both influenza A virus and avian paramyxovirus-1 in Finnish wild waterfowl was documented. The FLUAV and APMV-1 prevalences in wild waterfowl were 11.3% and 5.2% respectively, by this study. The subtype H3N8 was the only detected FLUAV subtype while APMV-1 strains clustered into two distinct lineages. Notably, antibodies to a likely mosquito-borne flavivirus were detected in three samples. The screening approach based on hunted waterfowl seemed reliable for monitoring FLUAV and APMV by RT-PCR from cloacal or tracheal samples, but antibody testing in this format seemed to be of low sensitivity.

38 citations

Journal ArticleDOI
TL;DR: The authors developed a continentality proxy (1600-1930) based on amplitudes of the annual signal in oxygen isotopes in an ice core and showed via modeling that by using 5 and 15 year average amplitudes the effects of diffusion and varying layer thickness can be minimized, such that amplitudes then reflect real seasonal changes in δ18O under the influence of melt.
Abstract: We develop a continentality proxy (1600–1930) based on amplitudes of the annual signal in oxygen isotopes in an ice core. We show via modeling that by using 5 and 15 year average amplitudes the effects of diffusion and varying layer thickness can be minimized, such that amplitudes then reflect real seasonal changes in δ18O under the influence of melt. A model of chemical fractionation in ice based on differing elution rates for pairs of ions is developed as a proxy for summer melt (1130–1990). The best pairs are sodium with magnesium and potassium with chloride. The continentality and melt proxies are validated against twentieth-century instrumental records and longer historical climate proxies. In addition to summer temperature, the melt proxy also appears to reflect sea ice extent, likely as a result of sodium chloride fractionation in the oceanic sea ice margin source area that is dependent on winter temperatures. We show that the climate history they depict is consistent with what we see from isotopic paleothermometry. Continentality was greatest during the Little Ice Age but decreased around 1870, 20–30 years before the rise in temperatures indicated by the δ18O profile. The degree of summer melt was significantly larger during the period 1130–1300 than in the 1990s.

38 citations

Journal ArticleDOI
TL;DR: In this article, the authors provided information on the relationships between physical, chemical, and biological properties of East Antarctic sea ice sampled as part of the Sea Ice Physics and Ecosystem eXperiment (SIPEX) during the winter-spring transition in 2007.
Abstract: Our study provides information on the relationships between physical, chemical, and biological properties of East Antarctic sea ice sampled as part of the Sea Ice Physics and Ecosystem eXperiment (SIPEX) during the winter-spring transition in 2007. The sampled sea ice showed a high contribution of granular ice, indicating the turbulent conditions during sea ice formation off East Antarctica. The sea ice was cold, with brine volumes often below or very close to the theoretical percolation threshold of sea ice. Dissolved inorganic nutrient concentrations showed both positive and negative deviations from theoretical dilution lines, indicating both nutrient uptake as well as nutrient remineralisation in sea ice brines. Cold temperatures, high brine salinities, and low brine volumes limited high ice algal biomass to the warmer and more porous sea ice layers at the ice–water interface. We hypothesise that East Antarctic sea ice shows generally low ice algal biomass accumulation due to a combination of relatively low snow–loading, relatively cold ice temperatures, and short persistence of sea ice into the warm forcing regime, all of which prevent the development of significant internal and surface communities.

38 citations

Journal ArticleDOI
TL;DR: The results indicate a strong but non-linear relationship between total volume of CWD and species richness of polypores, but successional stage and naturalness also explained part of the variation, demonstrating the importance of old-growth and young post-fire forests as landscape-level habitats and species pools, especially for red-listed species.

38 citations


Authors

Showing all 710 results

NameH-indexPapersCitations
Hong Li10377942675
John C. Moore7638925542
Jeffrey M. Welker5717918135
Bruce C. Forbes431307984
Mats A. Granskog411415023
Manfred A. Lange38924256
Liisa Tyrväinen371126649
Samuli Helama351564008
Aslak Grinsted34899653
Jukka Jokimäki31934175
Sari Stark29582559
Elina Lahelma27862217
Jonna Häkkilä25972185
Rupert Gladstone23512320
Justus J. Randolph23662160
Network Information
Related Institutions (5)
Lancaster University
44.5K papers, 1.6M citations

81% related

University of Potsdam
26.7K papers, 759.7K citations

80% related

University of Jyväskylä
25.1K papers, 725K citations

79% related

Royal Holloway, University of London
20.9K papers, 851.2K citations

78% related

Aalto University
32.6K papers, 829.6K citations

78% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202318
202261
2021158
2020157
2019172
2018128