scispace - formally typeset
Search or ask a question
Institution

University of Montpellier

EducationMontpellier, Languedoc-Roussillon, France
About: University of Montpellier is a education organization based out in Montpellier, Languedoc-Roussillon, France. It is known for research contribution in the topics: Population & Context (language use). The organization has 26816 authors who have published 53843 publications receiving 1646905 citations. The organization is also known as: Université de Montpellier.


Papers
More filters
Journal ArticleDOI
TL;DR: Substantial agreement was found among a large, interdisciplinary cohort of international experts regarding evidence supporting recommendations, and the remaining literature gaps in the assessment, prevention, and treatment of Pain, Agitation/sedation, Delirium, Immobility (mobilization/rehabilitation), and Sleep (disruption) in critically ill adults.
Abstract: Objective:To update and expand the 2013 Clinical Practice Guidelines for the Management of Pain, Agitation, and Delirium in Adult Patients in the ICU.Design:Thirty-two international experts, four methodologists, and four critical illness survivors met virtually at least monthly. All section groups g

1,935 citations

Journal ArticleDOI
14 Jan 2016-Nature
TL;DR: Analysis of worldwide variation in six major traits critical to growth, survival and reproduction within the largest sample of vascular plant species ever compiled found that occupancy of six-dimensional trait space is strongly concentrated, indicating coordination and trade-offs.
Abstract: The authors found that the key elements of plant form and function, analysed at global scale, are largely concentrated into a two-dimensional plane indexed by the size of whole plants and organs on the one hand, and the construction costs for photosynthetic leaf area, on the other.

1,814 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the results of 16 years of monitoring stellar orbits around the massive black hole in the center of the Milky Way, using high-resolution near-infrared techniques.
Abstract: We present the results of 16 years of monitoring stellar orbits around the massive black hole in the center of the Milky Way, using high-resolution near-infrared techniques. This work refines our previous analysis mainly by greatly improving the definition of the coordinate system, which reaches a long-term astrometric accuracy of 300 μas, and by investigating in detail the individual systematic error contributions. The combination of a long-time baseline and the excellent astrometric accuracy of adaptive optics data allows us to determine orbits of 28 stars, including the star S2, which has completed a full revolution since our monitoring began. Our main results are: all stellar orbits are fit extremely well by a single-point-mass potential to within the astrometric uncertainties, which are now 6× better than in previous studies. The central object mass is , where the fractional statistical error of 1.5% is nearly independent from R 0, and the main uncertainty is due to the uncertainty in R 0. Our current best estimate for the distance to the Galactic center is R 0 = 8.33 ± 0.35 kpc. The dominant errors in this value are systematic. The mass scales with distance as (3.95 ± 0.06) × 106(R 0/8 kpc)2.19 M ☉. The orientations of orbital angular momenta for stars in the central arcsecond are random. We identify six of the stars with orbital solutions as late-type stars, and six early-type stars as members of the clockwise-rotating disk system, as was previously proposed. We constrain the extended dark mass enclosed between the pericenter and apocenter of S2 at less than 0.066, at the 99% confidence level, of the mass of Sgr A*. This is two orders of magnitudes larger than what one would expect from other theoretical and observational estimates.

1,787 citations

Journal ArticleDOI
TL;DR: This article summarizes the ATTD consensus recommendations for relevant aspects of CGM data utilization and reporting among the various diabetes populations.
Abstract: Improvements in sensor accuracy, greater convenience and ease of use, and expanding reimbursement have led to growing adoption of continuous glucose monitoring (CGM). However, successful utilization of CGM technology in routine clinical practice remains relatively low. This may be due in part to the lack of clear and agreed-upon glycemic targets that both diabetes teams and people with diabetes can work toward. Although unified recommendations for use of key CGM metrics have been established in three separate peer-reviewed articles, formal adoption by diabetes professional organizations and guidance in the practical application of these metrics in clinical practice have been lacking. In February 2019, the Advanced Technologies & Treatments for Diabetes (ATTD) Congress convened an international panel of physicians, researchers, and individuals with diabetes who are expert in CGM technologies to address this issue. This article summarizes the ATTD consensus recommendations for relevant aspects of CGM data utilization and reporting among the various diabetes populations.

1,776 citations

Journal ArticleDOI
TL;DR: In this article, a theoretical perspective is provided on the glass transition in molecular liquids at thermal equilibrium, on the spatially heterogeneous and aging dynamics of disordered materials, and on the rheology of soft glassy materials.
Abstract: A theoretical perspective is provided on the glass transition in molecular liquids at thermal equilibrium, on the spatially heterogeneous and aging dynamics of disordered materials, and on the rheology of soft glassy materials. We start with a broad introduction to the field and emphasize its connections with other subjects and its relevance. The important role played by computer simulations in studying and understanding the dynamics of systems close to the glass transition at the molecular level is given. The recent progress on the subject of the spatially heterogeneous dynamics that characterizes structural relaxation in materials with slow dynamics is reviewed. The main theoretical approaches are presented describing the glass transition in supercooled liquids, focusing on theories that have a microscopic, statistical mechanics basis. We describe both successes and failures and critically assess the current status of each of these approaches. The physics of aging dynamics in disordered materials and the rheology of soft glassy materials are then discussed, and recent theoretical progress is described. For each section, an extensive overview is given of the most recent advances, but we also describe in some detail the important open problems that will occupy a central place in this field in the coming years.

1,774 citations


Authors

Showing all 27007 results

NameH-indexPapersCitations
Jean Bousquet145128896769
Tomas Ganz14148073316
Jean-Marie Tarascon136853137673
Johann Cohen-Tanugi13243458881
Beatrice H. Hahn12945869206
Nicholas A. Kotov12357455210
F. Piron11827047676
Robert H. Crabtree11367848634
Christian Serre11041956800
Alan Cooper10874645772
Serge Hercberg10694256791
Louis Bernatchez10656835682
Joël Bockaert10548039464
E. Nuss10422038488
Jordi Rello10369435994
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

97% related

University of Paris
174.1K papers, 5M citations

96% related

École Normale Supérieure
99.4K papers, 3M citations

95% related

Spanish National Research Council
220.4K papers, 7.6M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202381
2022444
20214,245
20204,000
20193,773
20183,458