scispace - formally typeset
Search or ask a question
Institution

University of Stuttgart

EducationStuttgart, Germany
About: University of Stuttgart is a education organization based out in Stuttgart, Germany. It is known for research contribution in the topics: Laser & Finite element method. The organization has 27715 authors who have published 56370 publications receiving 1363382 citations. The organization is also known as: Universität Stuttgart.


Papers
More filters
01 Jan 2002
TL;DR: A review of the main principles underlying NMPC is provided and the key advantages/disadvantages of NMPC are outlined and some of the theoretical, computational, and implementational aspects ofNMPC are discussed.
Abstract: While linear model predictive control is popular since the 70s of the past century, the 90s have witnessed a steadily increasing attention from control theoretists as well as control practitioners in the area of nonlinear model predictive control (NMPC). The practical interest is driven by the fact that today’s processes need to be operated under tighter performance specifications. At the same time more and more constraints, stemming for example from environmental and safety considerations, need to be satisfied. Often these demands can only be met when process nonlinearities and constraints are explicitly considered in the controller. Nonlinear predictive control, the extension of well established linear predictive control to the nonlinear world, appears to be a well suited approach for this kind of problems. In this note the basic principle of NMPC is reviewed, the key advantages/disadvantages of NMPC are outlined and some of the theoretical, computational, and implementational aspects of NMPC are discussed. Furthermore, some of the currently open questions in the area of NMPC are outlined. 1 Principles, Mathematical Formulation and Properties of Nonlinear Model Predictive Control Model predictive control (MPC), also referred to as moving horizon control or receding horizon control, has become an attractive feedback strategy, especially for linear processes. Linear MPC refers to a family of MPC schemes in which linear models are used to predict the system dynamics, even though the dynamics of the closed-loop system is nonlinear due to the presence of constraints. Linear MPC approaches have found successful applications, especially in the process industries. A good overview of industrial linear MPC techniques can be found in [64, 65], where more than 2200 applications in a very wide range from chemicals to aerospace industries are summarized. By now, linear MPC theory is quite mature. Important issues such as online computation, the interplay between modeling/identification and control and system theoretic issues like stability are well addressed [41, 52, 58]. Many systems are, however, in general inherently nonlinear. This, together with higher product quality specifications and increasing productivity demands, tighter environmental regulations and demanding economical considerations in the process industry require to operate systems closer to the boundary of the admissible operating region. In these cases, linear models are often inadequate to describe the process dynamics and nonlinear models have to be used. This motivates the use of nonlinear model predictive control. This paper focuses on the application of model predictive control techniques to nonlinear systems. It provides a review of the main principles underlying NMPC and outlines the key advantages/disadvantages of NMPC and some of the theoretical, computational, and implementational aspects. Note, however, that it is not intended as a complete review of existing NMPC techniques. Instead we refer to the following list for some excellent reviews [4, 16, 22, 52, 58, 68]. In Section 1.1 and Section 1.2 the basic underlying concept of NMPC is introduced. In Section 2 some of the system theoretical aspects of NMPC are presented. After an outline of NMPC schemes that achieve stability one particular NMPC formulation, namely quasi-infinite horizon NMPC (QIH-NMPC) is outlined to exemplify the basic ideas to achieve stability. This approach allows a (computationally) efficient formulation of NMPC while guaranteeing stability and performance of the closed-loop. Besides the basic question of the stability of the closed-loop, questions such as robust formulations of NMPC and some remarks on the performance of the closed-loop are given in Section 2.3 and Section 2.2. Section 2.4 gives some remarks on the output-feedback problem in connection with NMPC. After a short review of existing approaches one

407 citations

Journal ArticleDOI
TL;DR: In this article, a generalization of recently developed continuum phase field models from brittle to ductile fracture coupled with thermo-plasticity at finite strains is presented, which uses a geometric approach to the diffusive crack modeling based on the introduction of a balance equation for a regularized crack surface.

407 citations

Journal ArticleDOI
TL;DR: A palladium-based plasmonic perfect absorber at visible wavelengths and its application to hydrogen sensing, which introduces a novel optical hydrogen detection scheme with very high values of the relative intensity response.
Abstract: We report on the experimental realization of a palladium-based plasmonic perfect absorber at visible wavelengths and its application to hydrogen sensing. Our design exhibits a reflectance <0.5% and zero transmittance at 650 nm and the operation wavelength of the absorber can be tuned by varying its structural parameters. Exposure to hydrogen gas causes a rapid and reversible increase in reflectance on a time scale of seconds. This pronounced response introduces a novel optical hydrogen detection scheme with very high values of the relative intensity response.

407 citations

Journal ArticleDOI
TL;DR: The paper will review a number of current approaches in order to comprehensively elaborate the state of the art of reconstruction methods and their respective principles and the generation of more detailed facade geometries from terrestrial data collection.
Abstract: The development of tools for the generation of 3D city models started almost two decades ago. From the beginning, fully automatic reconstruction systems were envisioned to fulfil the need for efficient data collection. However, research on automatic city modelling is still a very active area. The paper will review a number of current approaches in order to comprehensively elaborate the state of the art of reconstruction methods and their respective principles. Originally, automatic city modelling only aimed at polyhedral building objects, which mainly reflects the respective roof shapes and building footprints. For this purpose, airborne images or laser scans are used. In addition to these developments, the paper will also review current approaches for the generation of more detailed facade geometries from terrestrial data collection.

407 citations

Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1501 moreInstitutions (239)
TL;DR: In this article, the physics opportunities of the Future Circular Collider (FC) were reviewed, covering its e+e-, pp, ep and heavy ion programs, and the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions.
Abstract: We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics.

407 citations


Authors

Showing all 28043 results

NameH-indexPapersCitations
Yi Chen2174342293080
Robert J. Lefkowitz214860147995
Michael Kramer1671713127224
Andrew G. Clark140823123333
Stephen D. Walter11251357012
Fedor Jelezko10341342616
Ulrich Gösele10260346223
Dirk Helbing10164256810
Ioan Pop101137047540
Niyazi Serdar Sariciftci9959154055
Matthias Komm9983243275
Hans-Joachim Werner9831748508
Richard R. Ernst9635253100
Xiaoming Sun9638247153
Feng Chen95213853881
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

95% related

RWTH Aachen University
96.2K papers, 2.5M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

University of Erlangen-Nuremberg
85.6K papers, 2.6M citations

93% related

Technische Universität München
123.4K papers, 4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023147
2022482
20212,588
20202,646
20192,654
20182,525