scispace - formally typeset
Search or ask a question
Institution

Wuhan University of Technology

EducationWuhan, China
About: Wuhan University of Technology is a education organization based out in Wuhan, China. It is known for research contribution in the topics: Microstructure & Catalysis. The organization has 40384 authors who have published 36724 publications receiving 575695 citations. The organization is also known as: WUT.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors developed a supercapacitor electrode composed of 3D self-supported Co3O4@CoMoO4 core-shell architectures directly grown on nickel foam.

307 citations

Journal ArticleDOI
TL;DR: In this article, WS2-graphitic carbon nitride (g-C3N4) composites were prepared using WO3 and thiourea as precursors through a gas-solid reaction.

306 citations

Journal ArticleDOI
TL;DR: In this article, the effects of graphene introduction and gold loading on the photocatalytic hydrogen production rates of the as-prepared samples in a methanolic aqueous solution were investigated.
Abstract: The construction and application of visible-light-driven photocatalysts falls in the central focus for the efficient utilization of renewable solar energy, which provides unprecedented opportunities for addressing the increasing concerns on energy and environmental sustainability. Herein, graphene based Au–TiO2 photocatalysts were fabricated by a simple, one-step microwave-assisted hydrothermal method, using Degussa P25 TiO2 powder (P25), graphene oxide and HAuCl4 aqueous solution as the raw materials. The effects of graphene introduction and gold loading on the photocatalytic hydrogen production rates of the as-prepared samples in a methanolic aqueous solution were investigated. The results indicated that Au–TiO2–graphene composite had a significantly increased visible light absorption and enhanced photocatalytic H2-production activity compared to the Au–TiO2 composite. In comparison, the pure TiO2, graphene–TiO2 and graphene–Au had no appreciable visible-light-driven H2 production. The enhanced photocatalytic H2-production activity of the Au–TiO2–graphene composite is ascribed to (1) the load of the Au nanoparticles which broadens the visible light response of TiO2 due to the surface plasmon resonance (SPR) effect, and (2) the introduction of graphene, which functions as rapid electron transfer units, facilitating the space separation of photoelectron and hole pairs. The proposed H2-production activity enhancement mechanism was further confirmed by the transient photocurrent response and electrochemical impedance spectroscopy (EIS) experiments.

304 citations

Journal ArticleDOI
TL;DR: Here, it is demonstrated that the hierarchical mesoporous LSCO nanowires are high-performance catalysts for the ORR with low peak-up potential and high limiting diffusion current, and Li-air batteries are fabricated on the basis of hierarchical meso-mesh perovskites and nonaqueous electrolytes, which exhibited ultrahigh capacity, ca.
Abstract: Lithium-air batteries have captured worldwide attention due to their highest energy density among the chemical batteries. To provide continuous oxygen channels, here, we synthesized hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 (LSCO) nanowires. We tested the intrinsic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity in both aqueous electrolytes and nonaqueous electrolytes via rotating disk electrode (RDE) measurements and demonstrated that the hierarchical mesoporous LSCO nanowires are high-performance catalysts for the ORR with low peak-up potential and high limiting diffusion current. Furthermore, we fabricated Li-air batteries on the basis of hierarchical mesoporous LSCO nanowires and nonaqueous electrolytes, which exhibited ultrahigh capacity, ca. over 11,000 mAh⋅g –1, one order of magnitude higher than that of LSCO nanoparticles. Besides, the possible reaction mechanism is proposed to explain the catalytic activity of the LSCO mesoporous nanowire.

304 citations

Journal ArticleDOI
Kai Wang1, Gaoke Zhang1, Jun Li1, Yuan Li1, Xiaoyong Wu1 
TL;DR: This study fabricated a visible-light-responsive Bi3TaO7 quantum dots/g-C3N4 nanosheets 0D/2D Z-scheme composite via a facile ultrasound method, and it showed the superior photocatalytic activity for degradation of ciprofloxacin over the composites prepared by mechanical mixing and solid-state methods.
Abstract: Constructing 0D/2D Z-scheme photocatalysts is a great promising path to improve photocatalytic activity by efficiently enhancing charge separation. Herein, we fabricated a visible-light-responsive Bi3TaO7 quantum dots (QDs)/g-C3N4 nanosheets (NSs) 0D/2D Z-scheme composite via a facile ultrasound method, and Bi3TaO7 QDs could be interspersed on the surface of g-C3N4 NSs uniformly. Furthermore, the strong interaction between Bi3TaO7 QDs and g-C3N4 NSs disturbed the CN heterocycles by forming C═O bonds between C atoms of the N-(C)3 group and O atoms of the Ta–O bond. The optimum composite with 20 wt % g-C3N4 NSs showed the superior photocatalytic activity for degradation of ciprofloxacin (CIP) over the composites prepared by mechanical mixing and solid-state methods, the photocatalytic efficiency of which were 4 and 12.2 times higher than those of bare Bi3TaO7 and g-C3N4. Photoluminescence (PL), time-resolved transient PL decay spectra, and photocurrent together verify that the photogenerated hole–electron ...

303 citations


Authors

Showing all 40691 results

NameH-indexPapersCitations
Jiaguo Yu178730113300
Charles M. Lieber165521132811
Dongyuan Zhao160872106451
Yu Huang136149289209
Han Zhang13097058863
Chao Zhang127311984711
Bo Wang119290584863
Jianjun Liu112104071032
Hong Wang110163351811
Jimmy C. Yu10835036736
Søren Nielsen10580645995
Liqiang Mai10461639558
Bei Cheng10426033672
Feng Li10499560692
Qi Li102156346762
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

94% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

93% related

Tianjin University
79.9K papers, 1.2M citations

91% related

Beihang University
73.5K papers, 975.6K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023140
2022599
20213,894
20203,665
20193,551
20183,076