scispace - formally typeset
Search or ask a question
Institution

Wuhan University of Technology

EducationWuhan, China
About: Wuhan University of Technology is a education organization based out in Wuhan, China. It is known for research contribution in the topics: Microstructure & Catalysis. The organization has 40384 authors who have published 36724 publications receiving 575695 citations. The organization is also known as: WUT.


Papers
More filters
Journal ArticleDOI
Hongxia Huang1, Ting Guo1, Kai Wang1, Yuan Li1, Gaoke Zhang1 
TL;DR: The electron spin resonance (ESR) analysis indicated that the generation of the sulfate radicals, hydroxyl radicals, and superoxide radicals was greatly promoted in the MRSB/PS system, which might give a new way to reuse abandoned rape straw and synthesize new recyclable catalysts for activating PS to degrade organic pollutants in water.

171 citations

Journal ArticleDOI
TL;DR: In this paper, a simple method for preparing highly photoactive nano-sized TiO2 photocatalyst with anatase and brookite phase was developed by hydrolysis of titanium tetraisopropoxide in pure water or the EtOH/H2O mixed solution under ultrasonic irradiation.
Abstract: A simple method for preparing highly photoactive nano-sized TiO2 photocatalyst with anatase and brookite phase was developed by hydrolysis of titanium tetraisopropoxide in pure water or the EtOH/H2O mixed solution under ultrasonic irradiation. The prepared TiO2 powders were characterized by differential thermal analysis (DTA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and BET surface areas. The photocatalytic activity was evaluated by the photocatalytic oxidation of acetone in air. The results showed that the photocatalytic activity of TiO 2 powders prepared by this method from pure water or the EtOH/H2O mixed solutions with the molar ratio of EtOH/H2O = 1 exceeded that of Degussa P-25. The molar ratios of EtOH/H2O obviously influenced the crystallization, crystallite size, BET surface areas and photocatalytic activity of the prepared TiO 2 powders. Ultrasonic irradiation obviously enhanced the photocatalytic activity of TiO 2 powders whether the solvent is pure water or the EtOH/H2O mixed solutions. This may be ascribed to the fact that ultrasonic irradiation enhances hydrolysis of titanium alkoxide and crystallization of TiO2 gel. © 2002 Elsevier Science B.V. All rights reserved.

171 citations

Journal ArticleDOI
01 Sep 2019

171 citations

Journal ArticleDOI
Shengwei Liu1, Chan Liu1, Wenguang Wang1, Bei Cheng1, Jiaguo Yu1 
TL;DR: Significantly, the incorporated graphene exerts combined effects on the adsorption and charge transfer dynamics in TiO(2)-graphene nanocomposites, which together endow them with good photocatalytic reactivity and tunable photoc atalytic selectivity in decomposing MO and MB in aqueous solution.
Abstract: Mesoporous TiO2–graphene nanocomposites are fabricated in high yield via two successive steps: (1) hydrothermal hydrolysis of Ti(SO4)2 in an acidic suspension of graphene oxide to gain TiO2–graphene oxide nanocomposites; (2) UV-assisted photocatalytic reduction of graphene oxide to get the TiO2–graphene nanocomposites. The anatase TiO2 nanocrystals with a crystallite size of 10–20 nm are densely packed and supported on meshy graphene sheets with close interfacial contacts, which is confirmed by transmission electron microscopy (TEM) together with Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Although a low graphene loading (0–2 wt%) slightly influences the textural properties (including the crystallite size, specific surface areas, and pore volume etc.), the incorporation of graphene in TiO2–graphene nanocomposites greatly increases the adsorption capacity towards azo dyes such as MO and MB, which is possibly associated with their unique surface properties. Significantly, the incorporated graphene exerts combined effects on the adsorption and charge transfer dynamics in TiO2–graphene nanocomposites, which together endow them with good photocatalytic reactivity and tunable photocatalytic selectivity in decomposing MO and MB in aqueous solution.

170 citations


Authors

Showing all 40691 results

NameH-indexPapersCitations
Jiaguo Yu178730113300
Charles M. Lieber165521132811
Dongyuan Zhao160872106451
Yu Huang136149289209
Han Zhang13097058863
Chao Zhang127311984711
Bo Wang119290584863
Jianjun Liu112104071032
Hong Wang110163351811
Jimmy C. Yu10835036736
Søren Nielsen10580645995
Liqiang Mai10461639558
Bei Cheng10426033672
Feng Li10499560692
Qi Li102156346762
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

94% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

93% related

Tianjin University
79.9K papers, 1.2M citations

91% related

Beihang University
73.5K papers, 975.6K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023140
2022599
20213,894
20203,665
20193,551
20183,076