scispace - formally typeset
Search or ask a question

Showing papers in "BMC Biology in 2008"


Journal ArticleDOI
TL;DR: This extensive survey demonstrates that at least a third of arthropod species are infected by a diverse assemblage of maternally inherited bacteria that are likely to strongly influence their hosts' biology, and indicates an urgent need to establish the nature of the interaction between non-Wolbachia bacteria and their hosts.
Abstract: Inherited bacteria have come to be recognised as important components of arthropod biology. In addition to mutualistic symbioses, a range of other inherited bacteria are known to act either as reproductive parasites or as secondary symbionts. Whilst the incidence of the α-proteobacterium Wolbachia is relatively well established, the current knowledge of other inherited bacteria is much weaker. Here, we tested 136 arthropod species for a range of inherited bacteria known to demonstrate reproductive parasitism, sampling each species more intensively than in past surveys. The inclusion of inherited bacteria other than Wolbachia increased the number of infections recorded in our sample from 33 to 57, and the proportion of species infected from 22.8% to 32.4%. Thus, whilst Wolbachia remained the dominant inherited bacterium, it alone was responsible for around half of all inherited infections of the bacteria sampled, with members of the Cardinium, Arsenophonus and Spiroplasma ixodetis clades each occurring in 4% to 7% of all species. The observation that infection was sometimes rare within host populations, and that there was variation in presence of symbionts between populations indicates that our survey will itself underscore incidence. This extensive survey demonstrates that at least a third of arthropod species are infected by a diverse assemblage of maternally inherited bacteria that are likely to strongly influence their hosts' biology, and indicates an urgent need to establish the nature of the interaction between non-Wolbachia bacteria and their hosts.

586 citations


Journal ArticleDOI
TL;DR: This is the first molecular identification of plant As(III) transport systems and it is proposed that metalloid transport through NIPs is a conserved and ancient feature.
Abstract: Arsenic is a toxic and highly abundant metalloid that endangers human health through drinking water and the food chain. The most common forms of arsenic in the environment are arsenate (As(V)) and arsenite (As(III)). As(V) is a non-functional phosphate analog that enters the food chain via plant phosphate transporters. Inside cells, As(V) becomes reduced to As(III) for subsequent extrusion or compartmentation. Although much is known about As(III) transport and handling in microbes and mammals, the transport systems for As(III) have not yet been characterized in plants. Here we show that the Nodulin26-like Intrinsic Proteins (NIPs) AtNIP5;1 and AtNIP6;1 from Arabidopsis thaliana, OsNIP2;1 and OsNIP3;2 from Oryza sativa, and LjNIP5;1 and LjNIP6;1 from Lotus japonicus are bi-directional As(III) channels. Expression of these NIPs sensitized yeast cells to As(III) and antimonite (Sb(III)), and direct transport assays confirmed their ability to facilitate As(III) transport across cell membranes. On medium containing As(V), expression of the same NIPs improved yeast growth, probably due to increased As(III) efflux. Our data furthermore provide evidence that NIPs can discriminate between highly similar substrates and that they may have differential preferences in the direction of transport. A subgroup of As(III) permeable channels that group together in a phylogenetic tree required N-terminal truncation for functional expression in yeast. This is the first molecular identification of plant As(III) transport systems and we propose that metalloid transport through NIPs is a conserved and ancient feature. Our observations are potentially of great importance for improved remediation and tolerance of plants, and may provide a key to the development of low arsenic crops for food production.

361 citations


Journal ArticleDOI
TL;DR: Using Bayesian dating techniques, phylogenetic and dating analyses suggest that mustelid diversification may have been spurred by a combination of faunal turnover events and diversification at lower trophic levels, ultimately caused by climatically driven environmental changes.
Abstract: Background: Adaptive radiation, the evolution of ecological and phenotypic diversity from a common ancestor, is a central concept in evolutionary biology and characterizes the evolutionary histories of many groups of organisms. One such group is the Mustelidae, the most species-rich family within the mammalian order Carnivora, encompassing 59 species classified into 22 genera. Extant mustelids display extensive ecomorphological diversity, with different lineages having evolved into an array of adaptive zones, from fossorial badgers to semi-aquatic otters. Mustelids are also widely distributed, with multiple genera found on different continents. As with other groups that have undergone adaptive radiation, resolving the phylogenetic history of mustelids presents a number of challenges because ecomorphological convergence may potentially confound morphologically based phylogenetic inferences, and because adaptive radiations often include one or more periods of rapid cladogenesis that require a large amount of data to resolve. Results: We constructed a nearly complete generic-level phylogeny of the Mustelidae using a data matrix comprising 22 gene segments (~12,000 base pairs) analyzed with maximum parsimony, maximum likelihood and Bayesian inference methods. We show that mustelids are consistently resolved with high nodal support into four major clades and three monotypic lineages. Using Bayesian dating techniques, we provide evidence that mustelids underwent two bursts of diversification that coincide with major paleoenvironmental and biotic changes that occurred during the Neogene and correspond with similar bursts of cladogenesis in other vertebrate groups. Biogeographical analyses indicate that most of the extant diversity of mustelids originated in Eurasia and mustelids have colonized Africa, North America and South America on multiple occasions.

314 citations


Journal ArticleDOI
TL;DR: It is established that Notch does not need to be O-fucosylated for fringe-independent Notch signaling in Drosophila; the chaperone activity of OFUT1 is sufficient for the generation of functional Notch.
Abstract: O-fucosyltransferase1 (OFUT1) is a conserved ER protein essential for Notch signaling. OFUT1 glycosylates EGF domains, which can then be further modified by the N-acetylglucosaminyltransferase Fringe. OFUT1 also possesses a chaperone activity that promotes the folding and secretion of Notch. Here, we investigate the respective contributions of these activities to Notch signaling in Drosophila. We show that expression of an isoform lacking fucosyltransferase activity, Ofut1 R245A , rescues the requirement for Ofut1 in embryonic neurogenesis. Lack of requirement for O-fucosylation is further supported by the absence of embryonic phenotypes in Gmd mutants, which lack all forms of fucosylation. Requirements for O-fucose during imaginal development were evaluated by characterizing clones of cells expressing only Ofut1 R245A . These clones phenocopy fringe mutant clones, indicating that the absence of O-fucose is functionally equivalent to the absence of elongated O-fucose. Our results establish that Notch does not need to be O-fucosylated for fringe-independent Notch signaling in Drosophila; the chaperone activity of OFUT1 is sufficient for the generation of functional Notch.

254 citations


Journal ArticleDOI
TL;DR: The 2A peptide efficiently mediates co-translational cleavage in transgenic mice in which it has been inherited through the germ-line and is therefore a viable tool for use in genetically engineered mice and represents a superior alternative to the widely used internal ribosomal entry site.
Abstract: Transgenic animals are widely used in biomedical research and biotechnology. Multicistronic constructs, in which several proteins are encoded by a single messenger RNA, are commonly used in genetically engineered animals. This is currently done by using an internal ribosomal entry site to separate the different coding regions. 2A peptides result in the co-translational 'cleavage' of proteins and are an attractive alternative to the internal ribosomal entry site. They are more reliable than the internal ribosomal entry site and lead to expression of multiple cistrons at equimolar levels. They work in a wide variety of eukaryotic cells, but to date have not been demonstrated to function in transgenic mice in an inheritable manner. To test 2A function in transgenic mice and uncover any possible toxicity of widespread expression of the 2A peptide, we made a bicistronic reporter construct containing the coding sequence for a membrane localised red fluorescent protein (Myr-TdTomato) and a nuclear localised green fluorescent protein (H2B-GFP), separated by a 2A sequence. When this reporter is transfected into HeLa cells, the two fluorescent proteins correctly localise to mutually exclusive cellular compartments, demonstrating that the bicistronic construct is a reliable readout of 2A function. The two fluorescent proteins also correctly localise when the reporter is electroporated into chick neural tube cells. We made two independent transgenic mouse lines that express the bicistronic reporter ubiquitously. For both lines, transgenic mice are born in Mendelian frequencies and are found to be healthy and fertile. Myr-TdTomato and H2B-GFP segregate to mutually exclusive cellular compartments in all tissues examined from a broad range of developmental stages, ranging from embryo to adult. One transgenic line shows X-linked inheritance of the transgene and mosaic expression in females but uniform expression in males, indicating that the transgene has integrated into the X chromosome in this line. The 2A peptide efficiently mediates co-translational cleavage in transgenic mice in which it has been inherited through the germ-line. Mice expressing it ubiquitously throughout development and into adulthood appear normal. It is therefore a viable tool for use in genetically engineered mice and represents a superior alternative to the widely used internal ribosomal entry site.

244 citations


Journal ArticleDOI
TL;DR: The results indicate that allopolyploidization entails significant homoeolog expression modulation, both immediately as a consequence of genomic merger, and secondarily as a result of long-term evolutionary transformations in duplicate gene expression.
Abstract: Polyploidy has played a prominent role in shaping the genomic architecture of the angiosperms. Through allopolyploidization, several modern Gossypium (cotton) species contain two divergent, although largely redundant genomes. Owing to this redundancy, these genomes can play host to an array of evolutionary processes that act on duplicate genes. We compared homoeolog (genes duplicated by polyploidy) contributions to the transcriptome of a natural allopolyploid and a synthetic interspecific F1 hybrid, both derived from a merger between diploid species from the Gossypium A-genome and D-genome groups. Relative levels of A- and D-genome contributions to the petal transcriptome were determined for 1,383 gene pairs. This comparison permitted partitioning of homoeolog expression biases into those arising from genomic merger and those resulting from polyploidy. Within allopolyploid Gossypium, approximately 24% of the genes with biased (unequal contributions from the two homoeologous copies) expression patterns are inferred to have arisen as a consequence of genomic merger, indicating that a substantial fraction of homoeolog expression biases occur instantaneously with hybridization. The remaining 76% of biased homoeologs reflect long-term evolutionary forces, such as duplicate gene neofunctionalization and subfunctionalization. Finally, we observed a greater number of genes biased toward the paternal D-genome and that expression biases have tended to increases during allopolyploid evolution. Our results indicate that allopolyploidization entails significant homoeolog expression modulation, both immediately as a consequence of genomic merger, and secondarily as a result of long-term evolutionary transformations in duplicate gene expression.

239 citations


Journal ArticleDOI
TL;DR: This work fails to reconcile molecular genetic divergence time estimates with dates taken from the fossil record, but finds strong support for an ancient origin of modern bird lineages, with many extant orders and families arising in the mid-Cretaceous, consistent with previous molecular estimates.
Abstract: Background: Determining an absolute timescale for avian evolutionary history has proven contentious. The two sources of information available, paleontological data and inference from extant molecular genetic sequences (colloquially, 'rocks' and 'clocks'), have appeared irreconcilable; the fossil record supports a Cenozoic origin for most modern lineages, whereas molecular genetic estimates suggest that these same lineages originated deep within the Cretaceous and survived the K-Pg (Cretaceous-Paleogene; formerly Cretaceous-Tertiary or K-T) mass-extinction event. These two sources of data therefore appear to support fundamentally different models of avian evolution. The paradox has been speculated to reflect deficiencies in the fossil record, unrecognized biases in the treatment of genetic data or both. Here we attempt to explore uncertainty and limit bias entering into molecular divergence time estimates through: (i) improved taxon (n = 135) and character (n = 4594 bp mtDNA) sampling; (ii) inclusion of multiple cladistically tested internal fossil calibration points (n = 18); (iii) correction for lineage-specific rate heterogeneity using a variety of methods (n = 5); (iv) accommodation of uncertainty in tree topology; and (v) testing for possible effects of episodic evolution. Results: The various 'relaxed clock' methods all indicate that the major (basal) lineages of modern birds originated deep within the Cretaceous, although temporal intraordinal diversification patterns differ across methods. We find that topological uncertainty had a systematic but minor influence on date estimates for the origins of major clades, and Bayesian analyses assuming fixed topologies deliver similar results to analyses with unconstrained topologies. We also find that, contrary to expectation, rates of substitution are not autocorrelated across the tree in an ancestor-descendent fashion. Finally, we find no signature of episodic molecular evolution related to either speciation events or the K-Pg boundary that could systematically mislead inferences from genetic data.

238 citations


Journal ArticleDOI
TL;DR: Comprehensive functional analysis showed that the housekeeping set is substantially larger than previously thought, and is enriched with vital processes such as oxidative phosphorylation, ubiquitin-dependent proteolysis, translation and energy metabolism.
Abstract: In recent years, the maturation of microarray technology has allowed the genome-wide analysis of gene expression patterns to identify tissue-specific and ubiquitously expressed ('housekeeping') genes. We have performed a functional and topological analysis of housekeeping and tissue-specific networks to identify universally necessary biological processes, and those unique to or characteristic of particular tissues. We measured whole genome expression in 31 human tissues, identifying 2374 housekeeping genes expressed in all tissues, and genes uniquely expressed in each tissue. Comprehensive functional analysis showed that the housekeeping set is substantially larger than previously thought, and is enriched with vital processes such as oxidative phosphorylation, ubiquitin-dependent proteolysis, translation and energy metabolism. Network topology of the housekeeping network was characterized by higher connectivity and shorter paths between the proteins than the global network. Ontology enrichment scoring and network topology of tissue-specific genes were consistent with each tissue's function and expression patterns clustered together in accordance with tissue origin. Tissue-specific genes were twice as likely as housekeeping genes to be drug targets, allowing the identification of tissue 'signature networks' that will facilitate the discovery of new therapeutic targets and biomarkers of tissue-targeted diseases. A comprehensive functional analysis of housekeeping and tissue-specific genes showed that the biological function of housekeeping and tissue-specific genes was consistent with tissue origin. Network analysis revealed that tissue-specific networks have distinct network properties related to each tissue's function. Tissue 'signature networks' promise to be a rich source of targets and biomarkers for disease treatment and diagnosis.

196 citations


Journal ArticleDOI
TL;DR: Multiple post-genomic techniques can be combined to provide mechanistic information about the toxic effects of chemical contaminants, even for non-model organisms with few additional mechanistic toxicological data.
Abstract: New methods are needed for research into non-model organisms, to monitor the effects of toxic disruption at both the molecular and functional organism level. We exposed earthworms (Lumbricus rubellus Hoffmeister) to sub-lethal levels of copper (10–480 mg/kg soil) for 70 days as a real-world situation, and monitored both molecular (cDNA transcript microarrays and nuclear magnetic resonance-based metabolic profiling: metabolomics) and ecological/functional endpoints (reproduction rate and weight change, which have direct relevance to population-level impacts). Both of the molecular endpoints, metabolomics and transcriptomics, were highly sensitive, with clear copper-induced differences even at levels below those that caused a reduction in reproductive parameters. The microarray and metabolomic data provided evidence that the copper exposure led to a disruption of energy metabolism: transcripts of enzymes from oxidative phosphorylation were significantly over-represented, and increases in transcripts of carbohydrate metabolising enzymes (maltase-glucoamylase, mannosidase) had corresponding decreases in small-molecule metabolites (glucose, mannose). Treating both enzymes and metabolites as functional cohorts led to clear inferences about changes in energetic metabolism (carbohydrate use and oxidative phosphorylation), which would not have been possible by taking a 'biomarker' approach to data analysis. Multiple post-genomic techniques can be combined to provide mechanistic information about the toxic effects of chemical contaminants, even for non-model organisms with few additional mechanistic toxicological data. With 70-day no-observed-effect and lowest-observed-effect concentrations (NOEC and LOEC) of 10 and 40 mg kg-1 for metabolomic and microarray profiles, copper is shown to interfere with energy metabolism in an important soil organism at an ecologically and functionally relevant level.

192 citations


Journal ArticleDOI
TL;DR: Molecular phylogenetic dating analyses of this large pan-African clade of Annonaceae unravels an interesting pattern of diversification for rain forest restricted trees co-occurring in West/Central and East African rain forests.
Abstract: Background: Tropical rain forests are the most diverse terrestrial ecosystems on the planet. How this diversity evolved remains largely unexplained. In Africa, rain forests are situated in two geographically isolated regions: the West-Central Guineo-Congolian region and the coastal and montane regions of East Africa. These regions have strong floristic affinities with each other, suggesting a former connection via an Eocene pan-African rain forest. High levels of endemism observed in both regions have been hypothesized to be the result of either 1) a single break-up followed by a long isolation or 2) multiple fragmentation and reconnection since the Oligocene. To test these hypotheses the evolutionary history of endemic taxa within a rain forest restricted African lineage of the plant family Annonaceae was studied. Molecular phylogenies and divergence dates were estimated using a Bayesian relaxed uncorrelated molecular clock assumption accounting for both calibration and phylogenetic uncertainties. Results: Our results provide strong evidence that East African endemic lineages of Annonaceae have multiple origins dated to significantly different times spanning the Oligocene and Miocene epochs. Moreover, these successive origins (c. 33, 16 and 8 million years – Myr) coincide with known periods of aridification and geological activity in Africa that would have recurrently isolated the Guineo-Congolian rain forest from the East African one. All East African taxa were found to have diversified prior to Pleistocene times. Conclusion: Molecular phylogenetic dating analyses of this large pan-African clade of Annonaceae unravels an interesting pattern of diversification for rain forest restricted trees co-occurring in West/Central and East African rain forests. Our results suggest that repeated reconnections between the West/Central and East African rain forest blocks allowed for biotic exchange while the break-ups induced speciation via vicariance, enhancing the levels of endemicity. These results provide an explanation for present day distribution patterns and origins of endemicity for African rain forest trees. Moreover, given the pre-Pleistocene origins of all the studied endemic East African genera and species, these results also offer important insights for setting conservation priorities in these highly diversified but threatened ecosystems.

174 citations


Journal ArticleDOI
TL;DR: Differences in visual sensitivities among species of Lake Malawi cichlids arise through heterochronic shifts relative to the ontogenetic pattern of the tilapia outgroup through altering developmental expression patterns, a powerful mechanism for change in morphological evolution.
Abstract: Background: Cichlid fishes have radiated into hundreds of species in the Great Lakes of Africa. Brightly colored males display on leks and vi e to be chosen by females as mates. Strong discrimination by females causes differential male mating success, rapid evolution of male color patterns and, possibly, speciation. In addition to differences in color pattern, Lake Malawi cichlids also show some of the largest known shifts in visual sensitivity among closely related species. These shifts result from modulated expression of seven cone opsin genes. However, the mechanisms for this modulated expression are unknown. Results: In this work, we ask whether these differences might result from changes in developmental patterning of cone opsin genes. To test this, we compared the developmental pattern of cone opsin gene expression of the Nile tilapia, Oreochromis niloticus, with that of several cichlid species from Lake Malawi. In tilapia, quantitative polymerase chain reaction showed that opsin gene expression changes dynamically from a larval gene set through a juvenile set to a final adult set. In contrast, Lake Malawi species showed one of two developmental patterns. In some species, the expressed gene set changes slowly, either retaining the larval pattern or progressing only from larval to juvenile gene sets (neoteny). In the other species, the same genes are expressed in both larvae and adults but correspond to the tilapia adult genes (direct development). Conclusion: Differences in visual sensitivities among species of Lake Malawi cichlids arise through heterochronic shifts relative to the ontogenetic pattern of the tilapia outgroup. Heterochrony has previously been shown to be a powerful mechanism for change in morphological evolution. We found that altering developmental expression patterns is also an important mechanism for altering sensory systems. These resulting sensory shifts will have major impacts on visual communication and could help drive cichlid speciation.

Journal ArticleDOI
TL;DR: It is proposed that D-M174 has a southern origin and its northward expansion occurred about 60,000 years ago, predating the northward migration of other major East Asian lineages.
Abstract: The phylogeography of the Y chromosome in Asia previously suggested that modern humans of African origin initially settled in mainland southern East Asia, and about 25,000–30,000 years ago, migrated northward, spreading throughout East Asia. However, the fragmented distribution of one East Asian specific Y chromosome lineage (D-M174), which is found at high frequencies only in Tibet, Japan and the Andaman Islands, is inconsistent with this scenario. In this study, we collected more than 5,000 male samples from 73 East Asian populations and reconstructed the phylogeography of the D-M174 lineage. Our results suggest that D-M174 represents an extremely ancient lineage of modern humans in East Asia, and a deep divergence was observed between northern and southern populations. We proposed that D-M174 has a southern origin and its northward expansion occurred about 60,000 years ago, predating the northward migration of other major East Asian lineages. The Neolithic expansion of Han culture and the last glacial maximum are likely the key factors leading to the current relic distribution of D-M174 in East Asia. The Tibetan and Japanese populations are the admixture of two ancient populations represented by two major East Asian specific Y chromosome lineages, the O and D haplogroups.

Journal ArticleDOI
TL;DR: Since cuticular hydrocarbons play a critical role in nestmate recognition and other social interactions in a wide variety of insect species, modulation of such chemical profiles by the activation of the immune system could play a crucial role in the social regulation of pathogen dissemination within the colony.
Abstract: Immune response pathways have been relatively well-conserved across animal species, with similar systems in both mammals and invertebrates. Interestingly, honey bees have substantially reduced numbers of genes associated with immune function compared with solitary insect species. However, social species such as honey bees provide an excellent environment for pathogen or parasite transmission with controlled environmental conditions in the hive, high population densities, and frequent interactions. This suggests that honey bees may have developed complementary mechanisms, such as behavioral modifications, to deal with disease. Here, we demonstrate that activation of the immune system in honey bees (using bacterial lipopolysaccharides as a non-replicative pathogen) alters the social responses of healthy nestmates toward the treated individuals. Furthermore, treated individuals expressed significant differences in overall cuticular hydrocarbon profiles compared with controls. Finally, coating healthy individuals with extracts containing cuticular hydrocarbons of immunostimulated individuals significantly increased the agonistic responses of nestmates. Since cuticular hydrocarbons play a critical role in nestmate recognition and other social interactions in a wide variety of insect species, modulation of such chemical profiles by the activation of the immune system could play a crucial role in the social regulation of pathogen dissemination within the colony.

Journal ArticleDOI
TL;DR: It is demonstrated that the protein-chromophore interactions responsible for blue-shifting the absorbance and emission maxima of mTFP1 operate independently of the chromophore structure, and the two histidine residues in close proximity to the Chromophore are approximately equal determinants of theblue-shifted fluorescence emission of m TFP1.
Abstract: In the 15 years that have passed since the cloning of Aequorea victoria green fluorescent protein (avGFP), the expanding set of fluorescent protein (FP) variants has become entrenched as an indispensable toolkit for cell biology research. One of the latest additions to the toolkit is monomeric teal FP (mTFP1), a bright and photostable FP derived from Clavularia cyan FP. To gain insight into the molecular basis for the blue-shifted fluorescence emission we undertook a mutagenesis-based study of residues in the immediate environment of the chromophore. We also employed site-directed and random mutagenesis in combination with library screening to create new hues of mTFP1-derived variants with wavelength-shifted excitation and emission spectra. Our results demonstrate that the protein-chromophore interactions responsible for blue-shifting the absorbance and emission maxima of mTFP1 operate independently of the chromophore structure. This conclusion is supported by the observation that the Tyr67Trp and Tyr67His mutants of mTFP1 retain a blue-shifted fluorescence emission relative to their avGFP counterparts (that is, Tyr66Trp and Tyr66His). Based on previous work with close homologs, His197 and His163 are likely to be the residues with the greatest contribution towards blue-shifting the fluorescence emission. Indeed we have identified the substitutions His163Met and Thr73Ala that abolish or disrupt the interactions of these residues with the chromophore. The mTFP1-Thr73Ala/His163Met double mutant has an emission peak that is 23 nm red-shifted from that of mTFP1 itself. Directed evolution of this double mutant resulted in the development of mWasabi, a new green fluorescing protein that offers certain advantages over enhanced avGFP (EGFP). To assess the usefulness of mTFP1 and mWasabi in live cell imaging applications, we constructed and imaged more than 20 different fusion proteins. Based on the results of our mutagenesis study, we conclude that the two histidine residues in close proximity to the chromophore are approximately equal determinants of the blue-shifted fluorescence emission of mTFP1. With respect to live cell imaging applications, the mTFP1-derived mWasabi should be particularly useful in two-color imaging in conjunction with a Sapphire-type variant or as a fluorescence resonance energy transfer acceptor with a blue FP donor. In all fusions attempted, both mTFP1 and mWasabi give patterns of fluorescent localization indistinguishable from that of well-established avGFP variants.

Journal ArticleDOI
TL;DR: Calculations showed that the resilin itself could only store 1% to 2% of the energy required for jumping, and the stiffer cuticular parts of the pleural arches could, however, easily meet all the energy storage needs.
Abstract: Many insects jump by storing and releasing energy in elastic structures within their bodies. This allows them to release large amounts of energy in a very short time to jump at very high speeds. The fastest of the insect jumpers, the froghopper, uses a catapult-like elastic mechanism to achieve their jumping prowess in which energy, generated by the slow contraction of muscles, is released suddenly to power rapid and synchronous movements of the hind legs. How is this energy stored? The hind coxae of the froghopper are linked to the hinges of the ipsilateral hind wings by pleural arches, complex bow-shaped internal skeletal structures. They are built of chitinous cuticle and the rubber-like protein, resilin, which fluoresces bright blue when illuminated with ultra-violet light. The ventral and posterior end of this fluorescent region forms the thoracic part of the pivot with a hind coxa. No other structures in the thorax or hind legs show this blue fluorescence and it is not found in larvae which do not jump. Stimulating one trochanteral depressor muscle in a pattern that simulates its normal action, results in a distortion and forward movement of the posterior part of a pleural arch by 40 μm, but in natural jumping, the movement is at least 100 μm. Calculations showed that the resilin itself could only store 1% to 2% of the energy required for jumping. The stiffer cuticular parts of the pleural arches could, however, easily meet all the energy storage needs. The composite structure therefore, combines the stiffness of the chitinous cuticle with the elasticity of resilin. Muscle contractions bend the chitinous cuticle with little deformation and therefore, store the energy needed for jumping, while the resilin rapidly returns its stored energy and thus restores the body to its original shape after a jump and allows repeated jumping.

Journal ArticleDOI
TL;DR: It is shown that a 3-week treatment of young mice with EPO enhances long-term potentiation (LTP), a cellular correlate of learning processes in the CA1 region of the hippocampus, and improves hippocampus dependent memory by modulating plasticity, synaptic connectivity and activity of memory-related neuronal networks.
Abstract: Erythropoietin (EPO) improves cognition of human subjects in the clinical setting by as yet unknown mechanisms. We developed a mouse model of robust cognitive improvement by EPO to obtain the first clues of how EPO influences cognition, and how it may act on hippocampal neurons to modulate plasticity. We show here that a 3-week treatment of young mice with EPO enhances long-term potentiation (LTP), a cellular correlate of learning processes in the CA1 region of the hippocampus. This treatment concomitantly alters short-term synaptic plasticity and synaptic transmission, shifting the balance of excitatory and inhibitory activity. These effects are accompanied by an improvement of hippocampus dependent memory, persisting for 3 weeks after termination of EPO injections, and are independent of changes in hematocrit. Networks of EPO-treated primary hippocampal neurons develop lower overall spiking activity but enhanced bursting in discrete neuronal assemblies. At the level of developing single neurons, EPO treatment reduces the typical increase in excitatory synaptic transmission without changing the number of synaptic boutons, consistent with prolonged functional silencing of synapses. We conclude that EPO improves hippocampus dependent memory by modulating plasticity, synaptic connectivity and activity of memory-related neuronal networks. These mechanisms of action of EPO have to be further exploited for treating neuropsychiatric diseases.

Journal ArticleDOI
TL;DR: Chemoreceptor gene families in Caenorhabditis species are large and evolutionarily dynamic as a result of gene duplication and gene loss, and the gray pawn hypothesis is proposed: individual genes are of little significance, but the aggregate of a large number of diverse genes is required to cover a large phenotype space.
Abstract: Chemoreceptor proteins mediate the first step in the transduction of environmental chemical stimuli, defining the breadth of detection and conferring stimulus specificity. Animal genomes contain families of genes encoding chemoreceptors that mediate taste, olfaction, and pheromone responses. The size and diversity of these families reflect the biology of chemoperception in specific species. Based on manual curation and sequence comparisons among putative G-protein-coupled chemoreceptor genes in the nematode Caenorhabditis elegans, we identified approximately 1300 genes and 400 pseudogenes in the 19 largest gene families, most of which fall into larger superfamilies. In the related species C. briggsae and C. remanei, we identified most or all genes in each of the 19 families. For most families, C. elegans has the largest number of genes and C. briggsae the smallest number, suggesting changes in the importance of chemoperception among the species. Protein trees reveal family-specific and species-specific patterns of gene duplication and gene loss. The frequency of strict orthologs varies among the families, from just over 50% in two families to less than 5% in three families. Several families include large species-specific expansions, mostly in C. elegans and C. remanei. Chemoreceptor gene families in Caenorhabditis species are large and evolutionarily dynamic as a result of gene duplication and gene loss. These dynamics shape the chemoreceptor gene complements in Caenorhabditis species and define the receptor space available for chemosensory responses. To explain these patterns, we propose the gray pawn hypothesis: individual genes are of little significance, but the aggregate of a large number of diverse genes is required to cover a large phenotype space.

Journal ArticleDOI
TL;DR: Together, these data shed light on the molecular pathways regulated by proneural genes and demonstrate that the integration of experimentation with bioinformatics can guide both hypothesis testing and hypothesis generation.
Abstract: The proneural proteins Mash1 and Ngn2 are key cell autonomous regulators of neurogenesis in the mammalian central nervous system, yet little is known about the molecular pathways regulated by these transcription factors. Here we identify the downstream effectors of proneural genes in the telencephalon using a genomic approach to analyze the transcriptome of mice that are either lacking or overexpressing proneural genes. Novel targets of Ngn2 and/or Mash1 were identified, such as members of the Notch and Wnt pathways, and proteins involved in adhesion and signal transduction. Next, we searched the non-coding sequence surrounding the predicted proneural downstream effector genes for evolutionarily conserved transcription factor binding sites associated with newly defined consensus binding sites for Ngn2 and Mash1. This allowed us to identify potential novel co-factors and co-regulators for proneural proteins, including Creb, Tcf/Lef, Pou-domain containing transcription factors, Sox9, and Mef2a. Finally, a gene regulatory network was delineated using a novel Bayesian-based algorithm that can incorporate information from diverse datasets. Together, these data shed light on the molecular pathways regulated by proneural genes and demonstrate that the integration of experimentation with bioinformatics can guide both hypothesis testing and hypothesis generation.

Journal ArticleDOI
TL;DR: It is shown that larval challenge with the endosymbiont results in a significant induction of antibacterial peptide genes, providing evidence that, outside the bacteriome, SZPE are recognized as microbial intruders by the host.
Abstract: Persistent infections with mutualistic intracellular bacteria (endosymbionts) are well represented in insects and are considered to be a driving force in evolution. However, while pathogenic relationships have been well studied over the last decades very little is known about the recognition of the endosymbionts by the host immune system and the mechanism that limits their infection to the bacteria-bearing host tissue (the bacteriome). To study bacteriome immune specificity, we first identified immune-relevant genes of the weevil Sitophilus zeamais by using suppressive subtractive hybridization (SSH) and then analyzed their full-length coding sequences obtained by RACE-PCR experiments. We then measured immune gene expression in the bacteriome, and in the aposymbiotic larvae following S. zeamais primary endosymbiont (SZPE) injection into the hemolymph, in order to consider the questions of bacteriome immune specificity and the insect humoral response to symbionts. We show that larval challenge with the endosymbiont results in a significant induction of antibacterial peptide genes, providing evidence that, outside the bacteriome, SZPE are recognized as microbial intruders by the host. In the bacteriome, gene expression analysis shows the overexpression of one antibacterial peptide from the coleoptericin family and, intriguingly, homologs to genes described as immune modulators (that is, PGRP-LB, Tollip) were also shown to be highly expressed in the bacteriome. The current data provide the first description of immune gene expression in the insect bacteriome. Compared with the insect humoral response to SZPE, the bacteriome expresses few genes among those investigated in this work. This local immune gene expression may help to maintain the endosymbiont in the bacteriome and prevent its invasion into insect tissues. Further investigations of the coleoptericin, the PGRP and the Tollip genes should elucidate the role of the host immune system in the maintenance and regulation of endosymbiosis.

Journal ArticleDOI
TL;DR: The results suggest that dispersal is a very important factor maintaining genetic diversity in a metapopulation consisting of large high-density populations interconnected by considerable dispersal rates, and to ensure the long-term survival of populations, conservation actions should not be blindly based on patch area and structural isolation.
Abstract: Theory predicts that lower dispersal, and associated gene flow, leads to decreased genetic diversity in small isolated populations, which generates adverse consequences for fitness, and subsequently for demography. Here we report for the first time this effect in a well-connected natural butterfly metapopulation with high population densities at the edge of its distribution range. We demonstrate that: (1) lower genetic diversity was coupled to a sharp decrease in adult lifetime expectancy, a key component of individual fitness; (2) genetic diversity was positively correlated to the number of dispersing individuals (indicative of landscape functional connectivity) and adult population size; (3) parameters inferred from capture-recapture procedures (population size and dispersal events between patches) correlated much better with genetic diversity than estimates usually used as surrogates for population size (patch area and descriptors of habitat quality) and dispersal (structural connectivity index). Our results suggest that dispersal is a very important factor maintaining genetic diversity. Even at a very local spatial scale in a metapopulation consisting of large high-density populations interconnected by considerable dispersal rates, genetic diversity can be decreased and directly affect the fitness of individuals. From a biodiversity conservation perspective, this study clearly shows the benefits of both in-depth demographic and genetic analyses. Accordingly, to ensure the long-term survival of populations, conservation actions should not be blindly based on patch area and structural isolation. This result may be especially pertinent for species at their range margins, particularly in this era of rapid environmental change.

Journal ArticleDOI
TL;DR: The effect of Hsp70 gene copy number modification on thermotolerance and the expression of multiple stress-response genes in Drosophila melanogaster is examined to determine which genes may represent mechanisms of stress tolerance independent of HSp70.
Abstract: Background The heat shock protein Hsp70 promotes inducible thermotolerance in nearly every organism examined to date. Hsp70 interacts with a network of other stress-response proteins, and dissecting the relative roles of these interactions in causing thermotolerance remains difficult. Here we examine the effect of Hsp70 gene copy number modification on thermotolerance and the expression of multiple stress-response genes in Drosophila melanogaster, to determine which genes may represent mechanisms of stress tolerance independent of Hsp70.

Journal ArticleDOI
TL;DR: All joint evidence supports the inference that the 14 introduced populations of L. neglectus in Europe likely arose from only very few independent introductions from the native range, and that new infestations were typically started through Introductions from other invasive populations.
Abstract: The invasive garden ant, Lasius neglectus, is the most recently detected pest ant and the first known invasive ant able to become established and thrive in the temperate regions of Eurasia. In this study, we aim to reconstruct the invasion history of this ant in Europe analysing 14 populations with three complementary approaches: genetic microsatellite analysis, chemical analysis of cuticular hydrocarbon profiles and behavioural observations of aggression behaviour. We evaluate the relative informative power of the three methodological approaches and estimate both the number of independent introduction events from a yet unknown native range somewhere in the Black Sea area, and the invasive potential of the existing introduced populations. Three clusters of genetically similar populations were detected, and all but one population had a similar chemical profile. Aggression between populations could be predicted from their genetic and chemical distance, and two major clusters of non-aggressive groups of populations were found. However, populations of L. neglectus did not separate into clear supercolonial associations, as is typical for other invasive ants. The three methodological approaches gave consistent and complementary results. All joint evidence supports the inference that the 14 introduced populations of L. neglectus in Europe likely arose from only very few independent introductions from the native range, and that new infestations were typically started through introductions from other invasive populations. This indicates that existing introduced populations have a very high invasive potential when the ants are inadvertently spread by human transport.

Journal ArticleDOI
TL;DR: Morphological characteristics shared by such physically disparate animals such as elephants and golden moles are not easy to recognize, but are now known to include late eruption of permanent teeth, in addition to vertebral anomalies, testicondy and other features.
Abstract: Afrotheria comprises a newly recognized clade of mammals with strong molecular evidence for its monophyly. In contrast, morphological data uniting its diverse constituents, including elephants, sea cows, hyraxes, aardvarks, sengis, tenrecs and golden moles, have been difficult to identify. Here, we suggest relatively late eruption of the permanent dentition as a shared characteristic of afrotherian mammals. This characteristic and other features (such as vertebral anomalies and testicondy) recall the phenotype of a human genetic pathology (cleidocranial dysplasia), correlations with which have not been explored previously in the context of character evolution within the recently established phylogeny of living mammalian clades. Although data on the absolute timing of eruption in sengis, golden moles and tenrecs are still unknown, craniometric comparisons for ontogenetic series of these taxa show that considerable skull growth takes place prior to the complete eruption of the permanent cheek teeth. Specimens showing less than half (sengis, golden moles) or two-thirds (tenrecs, hyraxes) of their permanent cheek teeth reach or exceed the median jaw length of conspecifics with a complete dentition. With few exceptions, afrotherians are closer to median adult jaw length with fewer erupted, permanent cheek teeth than comparable stages of non-afrotherians. Manatees (but not dugongs), elephants and hyraxes with known age data show eruption of permanent teeth late in ontogeny relative to other mammals. While the occurrence of delayed eruption, vertebral anomalies and other potential afrotherian synapomorphies resemble some symptoms of a human genetic pathology, these characteristics do not appear to covary significantly among mammalian clades. Morphological characteristics shared by such physically disparate animals such as elephants and golden moles are not easy to recognize, but are now known to include late eruption of permanent teeth, in addition to vertebral anomalies, testicondy and other features. Awareness of their possible genetic correlates promises insight into the developmental basis of shared morphological features of afrotherians and other vertebrates.

Journal ArticleDOI
TL;DR: The molecular analysis of oral jaw dental diversity in Lake Malawi cichlids shows how a complex multi-rowed vertebrate dentition is organized and how developmental tinkering of conserved gene networks during iterative pattern formation can impact upon the evolution of trophic novelty.
Abstract: Background: Periodic patterning of iterative structures is a fundamental process during embryonic organization and development. Studies have shown how gene networks are employed to pattern butterfly eyespots, fly bristles and vertebrate epithelial appendages such as teeth, feathers, hair and mammary glands. Despite knowledge of how these features are organized, little is known about how diversity in periodic patterning is generated in nature. We address this problem through the molecular analysis of oral jaw dental diversity in Lake Malawi cichlids, where closely related species exhibit from 1 to 20 rows of teeth, with total teeth counts ranging from around 10 to 700. Results: We investigate the expression of conserved gene networks (involving bmp2, bmp4, eda, edar, fgf8, pax9, pitx2, runx2, shh and wnt7b) known to pattern iterative structures and teeth in other vertebrates. We show that spatiotemporal variation in expression pattern reflects adult morphological diversity among three closely related Malawi cichlid species. Combinatorial epithelial expression of pitx2 and shh appears to govern the competence both of initial tooth sites and future tooth rows. Epithelial wnt7b and mesenchymal eda are expressed in the inter-germ and inter-row regions, and likely regulate the spacing of these shh-positive units. Finally, we used chemical knockdown to demonstrate the fundamental role of hedgehog signalling and initial placode formation in the organization of the periodically patterned cichlid dental programme. Conclusion: Coordinated patterns of gene expression differ among Malawi species and prefigure the future-ordered distribution of functional teeth of specific size and spacing. This variation in gene expression among species occurs early in the developmental programme for dental patterning. These data show how a complex multi-rowed vertebrate dentition is organized and how developmental tinkering of conserved gene networks during iterative pattern formation can impact upon the evolution of trophic novelty.

Journal ArticleDOI
TL;DR: The results provide the first evidence for a specific relevance of social calls for speciation in cryptic primates and support that specific differences in signalling and recognition systems represent an efficient premating isolation mechanism contributing to species cohesiveness in sympatrically living species.
Abstract: A central question in evolutionary biology is how cryptic species maintain species cohesiveness in an area of sympatry. The coexistence of sympatrically living cryptic species requires the evolution of species-specific signalling and recognition systems. In nocturnal, dispersed living species, specific vocalisations have been suggested to act as an ideal premating isolation mechanism. We studied the structure and perception of male advertisement calls of three nocturnal, dispersed living mouse lemur species, the grey mouse lemur (Microcebus murinus), the golden brown mouse lemur (M. ravelobensis) and the Goodman's mouse lemur (M. lehilahytsara). The first two species occur sympatrically, the latter lives allopatrically to them. A multi-parameter sound analysis revealed prominent differences in the frequency contour and in the duration of advertisement calls. To test whether mouse lemurs respond specifically to calls of the different species, we conducted a playback experiment with M. murinus from the field using advertisement calls and alarm whistle calls of all three species. Individuals responded significantly stronger to conspecific than to heterospecific advertisement calls but there were no differences in response behaviour towards statistically similar whistle calls of the three species. Furthermore, sympatric calls evoked weaker interest than allopatric advertisement calls. Our results provide the first evidence for a specific relevance of social calls for speciation in cryptic primates. They furthermore support that specific differences in signalling and recognition systems represent an efficient premating isolation mechanism contributing to species cohesiveness in sympatrically living species.

Journal ArticleDOI
TL;DR: The empirical tests with bacteria suggest that public-goods cooperation is likely to increase with increasing resource supply due to reduced costs of cooperation, confirming that resource supply is an important factor in the evolution of cooperation.
Abstract: Explaining public-goods cooperation is a challenge for evolutionary biology. However, cooperation is expected to more readily evolve if it imposes a smaller cost. Such costs of cooperation are expected to decline with increasing resource supply, an ecological parameter that varies widely in nature. We experimentally tested the effect of resource supply on the evolution of cooperation using two well-studied bacterial public-good traits: biofilm formation by Pseudomonas fluorescens and siderophore production by Pseudomonas aeruginosa. The frequency of cooperative bacteria increased with resource supply in the context of both bacterial public-good traits. In both cases this was due to decreasing costs of investment into public-goods cooperation with increasing resource supply. Our empirical tests with bacteria suggest that public-goods cooperation is likely to increase with increasing resource supply due to reduced costs of cooperation, confirming that resource supply is an important factor in the evolution of cooperation.

Journal ArticleDOI
TL;DR: Considering the important role for PKR in host defense against viruses, the independent duplication and fixation of PKR genes in different lineages probably provided selective advantages by leading to the recognition of an extended spectrum of viral nucleic acid structures, including both dsRNA and Z-DNA/RNA, and perhaps by altering sensitivity to viral PKR inhibitors.
Abstract: Double-stranded (ds) RNA, generated during viral infection, binds and activates the mammalian anti-viral protein kinase PKR, which phosphorylates the translation initiation factor eIF2α leading to the general inhibition of protein synthesis. Although PKR-like activity has been described in fish cells, the responsible enzymes eluded molecular characterization until the recent discovery of goldfish and zebrafish PKZ, which contain Z-DNA-binding domains instead of dsRNA-binding domains (dsRBDs). Fish and amphibian PKR genes have not been described so far. Here we report the cloning and identification of 13 PKR genes from 8 teleost fish and amphibian species, including zebrafish, demonstrating the coexistence of PKR and PKZ in this latter species. Analyses of their genomic organization revealed up to three tandemly arrayed PKR genes, which are arranged in head-to-tail orientation. At least five duplications occurred independently in fish and amphibian lineages. Phylogenetic analyses reveal that the kinase domains of fish PKR genes are more closely related to those of fish PKZ than to the PKR kinase domains of other vertebrate species. The duplication leading to fish PKR and PKZ genes occurred early during teleost fish evolution after the divergence of the tetrapod lineage. While two dsRBDs are found in mammalian and amphibian PKR, one, two or three dsRBDs are present in fish PKR. In zebrafish, both PKR and PKZ were strongly upregulated after immunostimulation with some tissue-specific expression differences. Using genetic and biochemical assays we demonstrate that both zebrafish PKR and PKZ can phosphorylate eIF2α in yeast. Considering the important role for PKR in host defense against viruses, the independent duplication and fixation of PKR genes in different lineages probably provided selective advantages by leading to the recognition of an extended spectrum of viral nucleic acid structures, including both dsRNA and Z-DNA/RNA, and perhaps by altering sensitivity to viral PKR inhibitors. Further implications of our findings for the evolution of the PKR family and for studying PKR/PKZ interactions with viral gene products and their roles in viral infections are discussed.

Journal ArticleDOI
TL;DR: This study is the first to provide explicit support from genetic data for a postglacial divergence scenario predicted by one of the best paleoecological records in the world.
Abstract: Background: Genetic tests of paleoecological hypotheses have been rare, partly because recent genetic divergence is difficult to detect and time. According to fossil plant data, continuous woodland in the southwestern USA and northern Mexico became fragmented during the last 10,000 years, as warming caused cool-adapted species to retreat to high elevations. Most genetic studies of resulting 'sky islands' have either failed to detect recent divergence or have found discordant evidence for ancient divergence. We test this paleoecological hypothesis for the region with intraspecific mitochondrial DNA and microsatellite data from sky-island populations of a sedentary bird, the Mexican jay (Aphelocoma ultramarina). We predicted that populations on different sky islands would share common, ancestral alleles that existed during the last glaciation, but that populations on each sky island, owing to their isolation, would contain unique variants of postglacial origin. We also predicted that divergence times estimated from corrected genetic distance and a coalescence model would post-date the last glacial maximum. Results: Our results provide multiple independent lines of support for postglacial divergence, with the predicted pattern of shared and unique mitochondrial DNA haplotypes appearing in two independent sky-island archipelagos, and most estimates of divergence time based on corrected genetic distance post-dating the last glacial maximum. Likewise, an isolation model based on multilocus gene coalescence indicated postglacial divergence of five pairs of sky islands. In contrast to their similar recent histories, the two archipelagos had dissimilar historical patterns in that sky islands in Arizona showed evidence for older divergence, suggesting different responses to the last glaciation. Conclusion: This study is one of the first to provide explicit support from genetic data for a postglacial divergence scenario predicted by one of the best paleoecological records in the world. Our results demonstrate that sky islands act as generators of genetic diversity at both recent and historical timescales and underscore the importance of thorough sampling and the use of loci with fast mutation rates to studies that test hypotheses concerning recent genetic divergence.

Journal ArticleDOI
TL;DR: The current results suggest that changes of tinnitus intensity induced by RI are mediated by alterations in the pathological patterns of spontaneous brain activity, specifically a reduction of delta activity.
Abstract: Tinnitus is an auditory phantom phenomenon characterized by the sensation of sounds without objectively identifiable sound sources. To date, its causes are not well understood. Previous research found altered patterns of spontaneous brain activity in chronic tinnitus sufferers compared to healthy controls, yet it is unknown whether these abnormal oscillatory patterns are causally related to the tinnitus sensation. Partial support for this notion comes from a neurofeedback approach developed by our group, in which significant reductions in tinnitus loudness could be achieved in patients who successfully normalized their patterns of spontaneous brain activity. The current work attempts to complement these studies by scrutinizing how modulations of tinnitus intensity alter ongoing oscillatory activity. In the present study the relation between tinnitus sensation and spontaneous brain activity was investigated using residual inhibition (RI) to reduce tinnitus intensity and source-space projected magnetencephalographic (MEG) data to index brain activity. RI is the sustained reduction (criteria: 50% for at least 30 s) in tinnitus loudness after cessation of a tonal tinnitus masker. A pilot study (n = 38) identified 10 patients who showed RI. A significant reduction of power in the delta (1.3–4.0 Hz) frequency band was observed in temporal regions during RI (p ≤ 0.001). The current results suggest that changes of tinnitus intensity induced by RI are mediated by alterations in the pathological patterns of spontaneous brain activity, specifically a reduction of delta activity. Delta activity is a characteristic oscillatory activity generated by deafferented/deprived neuronal networks. This implies that RI effects might reflect the transient reestablishment of balance between excitatory and inhibitory neuronal assemblies, via reafferentation, that have been perturbed (in most tinnitus individuals) by hearing damage. As enhancements have been reported in the delta frequency band for tinnitus at rest, this result conforms to our assumption that a normalization of oscillatory properties of cortical networks is a prerequisite for attenuating the tinnitus sensation. For RI to have therapeutic significance however, this normalization would have to be stabilized.

Journal ArticleDOI
TL;DR: The inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition of plants.
Abstract: The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity. We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants. Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions.