scispace - formally typeset
Search or ask a question

Showing papers in "Infection and Immunity in 2001"


Journal ArticleDOI
TL;DR: It is shown that type 1-piliated uropathogens can invade the superficial epithelial cells that line the lumenal surface of the bladder and subsequently replicate, forming massive foci of intracellular E. coli termed bacterial factories.
Abstract: The vast majority of urinary tract infections are caused by strains of uropathogenic Escherichia coli that encode filamentous adhesive organelles called type 1 pili. These structures mediate both bacterial attachment to and invasion of bladder epithelial cells. However, the mechanism by which type 1 pilus-mediated bacterial invasion contributes to the pathogenesis of a urinary tract infection is unknown. Here we show that type 1-piliated uropathogens can invade the superficial epithelial cells that line the lumenal surface of the bladder and subsequently replicate, forming massive foci of intracellular E. coli termed bacterial factories. In response to infection, superficial bladder cells exfoliate and are removed with the flow of urine. To avoid clearance by exfoliation, intracellular uropathogens can reemerge and eventually establish a persistent, quiescent bacterial reservoir within the bladder mucosa that may serve as a source for recurrent acute infections. These observations suggest that urinary tract infections are more chronic and invasive than generally assumed.

766 citations


Journal ArticleDOI
TL;DR: These studies demonstrate that in contrast to protein-free enterobacterial LPS, a similarly purified preparation of P. gingivalis LPS exhibited potent Toll-like receptor 2 (TLR2), rather than TLR4, agonist activity to elicit gene expression and cytokine secretion in murine macrophages and transfectants.
Abstract: Lipopolysaccharide (LPS) derived from the periodontal pathogen Porphyromonas gingivalis has been reported to differ structurally and functionally from enterobacterial LPS. These studies demonstrate that in contrast to protein-free enterobacterial LPS, a similarly purified preparation of P. gingivalis LPS exhibited potent Toll-like receptor 2 (TLR2), rather than TLR4, agonist activity to elicit gene expression and cytokine secretion in murine macrophages and transfectants. More importantly, TLR2 stimulation by this P. gingivalis LPS preparation resulted in differential expression of a panel of genes that are normally induced in murine macrophages by Escherichia coli LPS. These data suggest that (i) P. gingivalis LPS does not signal through TLR4 and (ii) signaling through TLR2 and through TLR4 differs quantitatively and qualitatively. Our data support the hypothesis that the shared signaling pathways elicited by TLR2 and by TLR4 agonists must diverge in order to account for the distinct patterns of inflammatory gene expression.

693 citations


Journal ArticleDOI
TL;DR: It is suggested that TNF-α plays an essential role in preventing reactivation of persistent tuberculosis, modulates the pulmonic expression of specific immunologic factors, and limits the pathological response of the host.
Abstract: Reactivation of latent tuberculosis contributes significantly to the incidence of disease caused by Mycobacterium tuberculosis. The mechanisms involved in the containment of latent tuberculosis are poorly understood. Using the low-dose model of persistent murine tuberculosis in conjunction with MP6-XT22, a monoclonal antibody that functionally neutralizes tumor necrosis factor alpha (TNF-α), we examined the effects of TNF-α on the immunological response of the host in both persistent and reactivated tuberculous infections. The results confirm an essential role for TNF-α in the containment of persistent tuberculosis. TNF-α neutralization resulted in fatal reactivation of persistent tuberculosis characterized by a moderately increased tissue bacillary burden and severe pulmonic histopathological deterioration that was associated with changes indicative of squamous metaplasia and fluid accumulation in the alveolar space. Analysis of pulmonic gene and protein expression of mice in the low-dose model revealed that nitric oxide synthase was attenuated during MP6-XT22-induced reactivation, but was not totally suppressed. Interleukin-12p40 and gamma interferon gene expression in TNF-α-neutralized mice was similar to that in control mice. In contrast, interleukin-10 expression was augmented in the TNF-α-neutralized mice. In summary, results of this study suggest that TNF-α plays an essential role in preventing reactivation of persistent tuberculosis, modulates the pulmonic expression of specific immunologic factors, and limits the pathological response of the host.

547 citations


Journal ArticleDOI
TL;DR: It is demonstrated that teichoic acids, highly charged cell wall polymers, play a key role in the first step of biofilm formation, which could have considerable impact on the design of novel implanted materials.
Abstract: Staphylococcus aureus is responsible for a large percentage of infections associated with implanted biomedical devices. The molecular basis of primary adhesion to artificial surfaces is not yet understood. Here, we demonstrate that teichoic acids, highly charged cell wall polymers, play a key role in the first step of biofilm formation. An S. aureus mutant bearing a stronger negative surface charge due to the lack of D-alanine esters in its teichoic acids can no longer colonize polystyrene or glass. The mutation abrogates primary adhesion to plastic while production of the glucosamine-based polymer involved in later steps of biofilm formation is not affected. Our data suggest that repulsive electrostatic forces can lead to reduced staphylococcal biofilm formation, which could have considerable impact on the design of novel implanted materials.

527 citations


Journal ArticleDOI
TL;DR: This video explains how to diagnose and treat tuberculosis by isolating the Mycobacterium tuberculosis bacterium from the blood of a person infected with the disease.
Abstract: Tuberculosis is a major cause of death around the world, with most of the 1.5 million deaths per year attributable to the disease occurring in developing countries. This disease is caused by Mycobacterium tuberculosis , an acid-fast bacillus that is transmitted primarily via the respiratory route.

484 citations


Journal ArticleDOI
TL;DR: Findings showed that Escherichia coli strains recovered from Crohn's disease (CD) lesions are able to survive and to replicate within macrophages, and AIEC LF82 replication does not induce any cell death of the infected cells, and LF82-infected J774-A1 cells release high levels of TNF-α.
Abstract: Escherichia coli strains recovered from Crohn's disease (CD) lesions are able to adhere to and invade cultured intestinal epithelial cells. We analyzed the behavior within macrophages of adherent invasive E. coli (AIEC) strains isolated from patients with CD. All the 15 AIEC strains tested were able to replicate extensively within J774-A1 cells: the numbers of intracellular bacteria increased 2.2- to 74.2-fold at 48 h over that at 1 h postinfection. By use of murine peritoneal macrophages and human monocyte-derived-macrophages, the reference AIEC strain LF82 was confirmed to be able to survive intracellularly. Transmission electron micrographs of AIEC LF82-infected macrophages showed that at 24 h postinfection, infected cells harbored large vacuoles containing numerous bacteria, as a result of the fusion of several vacuoles occurring after 8 h postinfection. No lactate dehydrogenase (LDH) release, no sign of DNA fragmentation or degradation, and no binding to fluorescein isothlocyanate-labeled annexin V were observed with LF82-infected J774-A1 cells, even after 24 h postinfection. LF82-infected J774-A1 cells secreted 2.7-fold more tumor necrosis factor alpha (TNF-α) than cells stimulated with 1 μg of lipopolysaccharide (LPS)/ml. No release of interleukin-1β was observed with LPS-prestimulated J774-A1 cells infected with AIEC LF82. These findings showed that (i) AIEC strains are able to survive and to replicate within macrophages, (ii) AIEC LF82 replication does not induce any cell death of the infected cells, and (iii) LF82-infected J774-A1 cells release high levels of TNF-α. These properties could be related to some features of CD and particularly to granuloma formation, one of the hallmarks of CD lesions.

439 citations


Journal ArticleDOI
TL;DR: Virulence determinants are usually proteinaceous in nature and are often either secreted to the bacterial cell surface or released into the external.
Abstract: Bacterial pathogens must execute a prodigious array of complex functions in order to survive, multiply, and disseminate within mammalian hosts. Virulence determinants are usually proteinaceous in nature and are often either secreted to the bacterial cell surface or released into the external

431 citations


Journal ArticleDOI
TL;DR: A gene from the megaplasmid of a LEE-negative O113:H21 STEC strain (98NK2) responsible for an outbreak of HUS encodes an auto-agglutinating adhesin designated Saa, which exhibits a low degree of similarity with YadA of Yersinia enterocolitica and Eib, a recently described phage-encoded immunoglobulin binding protein from E. coli.
Abstract: The capacity of Shiga toxigenic Escherichia coli (STEC) to adhere to the intestinal mucosa undoubtedly contributes to pathogenesis of human disease. The majority of STEC strains isolated from severe cases produce attaching and effacing lesions on the intestinal mucosa, a property mediated by the locus of enterocyte effacement (LEE) pathogenicity island. This element is not essential for pathogenesis, as some cases of severe disease, including hemolytic uremic syndrome (HUS), are caused by LEE-negative STEC strains, but the mechanism whereby these adhere to the intestinal mucosa is not understood. We have isolated a gene from the megaplasmid of a LEE-negative O113:H21 STEC strain (98NK2) responsible for an outbreak of HUS, which encodes an auto-agglutinating adhesin designated Saa (STEC autoagglutinating adhesin). Introduction of saa cloned in pBC results in a 9.7-fold increase in adherence of E. coli JM109 to HEp-2 cells and a semilocalized adherence pattern. Mutagenesis of saa in 98NK2, or curing the wild-type strain of its megaplasmid, resulted in a significant reduction in adherence. Homologues of saa were found in several unrelated LEE-negative STEC serotypes, including O48:H21 (strain 94CR) and O91:H21 (strain B2F1), which were also isolated from patients with HUS. Saa exhibits a low degree of similarity (25% amino acid [aa] identity) with YadA of Yersinia enterocolitica and Eib, a recently described phage-encoded immunoglobulin binding protein from E. coli. Saa produced by 98NK2 is 516 aa long and includes four copies of a 37-aa direct repeat sequence. Interestingly, Saa produced by other STEC strains ranges in size from 460 to 534 aa as a consequence of variation in the number of repeats and/or other insertions or deletions immediately proximal to the repeat domain.

378 citations


Journal ArticleDOI
TL;DR: The results validate the use of a genomic approach for the identification of novel microbial targets that elicit a protective immune response and may play a role in the development of improved vaccines against S. pneumoniae.
Abstract: Microbial targets for protective humoral immunity are typically surface-localized proteins and contain common sequence motifs related to their secretion or surface binding. Exploiting the whole genome sequence of the human bacterial pathogen Streptococcus pneumoniae, we identified 130 open reading frames encoding proteins with secretion motifs or similarity to predicted virulence factors. Mice were immunized with 108 of these proteins, and 6 conferred protection against disseminated S. pneumoniae infection. Flow cytometry confirmed the surface localization of several of these targets. Each of the six protective antigens showed broad strain distribution and immunogenicity during human infection. Our results validate the use of a genomic approach for the identification of novel microbial targets that elicit a protective immune response. These new antigens may play a role in the development of improved vaccines against S. pneumoniae.

370 citations


Journal ArticleDOI
TL;DR: The vaccine induced efficient immunological memory, which remained stable 30 weeks postvaccination, and reached the level of Mycobacterium bovis BCG-induced protection over a broad dose range.
Abstract: In this study, we investigated the potential of a tuberculosis subunit vaccine based on fusion proteins of the immunodominant antigens ESAT-6 and antigen 85B. When the fusion proteins were administered to mice in the adjuvant combination dimethyl dioctadecylammonium bromide-monophosphoryl lipid A, a strong dose-dependent immune response was induced to both single components as well as to the fusion proteins. The immune response induced was accompanied by high levels of protective immunity and reached the level of Mycobacterium bovis BCG-induced protection over a broad dose range. The vaccine induced efficient immunological memory, which remained stable 30 weeks postvaccination.

362 citations


Journal ArticleDOI
TL;DR: It is demonstrated that anaerobic in vitro growth conditions lead to increased polysaccharide expression in both S. aureus and S. epidermidis, which suggests a mechanism whereby ica gene expression and poly Saccharide production may act as a virulence factor in an an aerobic environment in vivo.
Abstract: Products of the intercellular adhesion (ica) operon in Staphylococcus aureus and Staphylococcus epidermidis synthesize a linear β-1,6-linked glucosaminylglycan. This extracellular polysaccharide mediates bacterial cell-cell adhesion and is required for biofilm formation, which is thought to increase the virulence of both pathogens in association with prosthetic biomedical implants. The environmental signal(s) that triggers ica gene product and polysaccharide expression is unknown. Here we demonstrate that anaerobic in vitro growth conditions lead to increased polysaccharide expression in both S. aureus and S. epidermidis, although the regulation is less stringent in S. epidermidis. Anaerobiosis also dramatically stimulates ica-specific mRNA expression in ica- and polysaccharide-positive strains of both S. aureus and S. epidermidis. These data suggest a mechanism whereby ica gene expression and polysaccharide production may act as a virulence factor in an anaerobic environment in vivo.

Journal ArticleDOI
TL;DR: Proteins destined for the extracellular environment of gram-negative bacteria have to cross two membranes during their journey across the bacterial cell envelope, which involves translocation across.
Abstract: Extracellular secretion of proteins is regarded as a major virulence mechanism in bacterial infection. Proteins destined for the extracellular environment of gram-negative bacteria have to cross two membranes during their journey across the bacterial cell envelope. This involves translocation across

Journal ArticleDOI
TL;DR: The findings indicate that the majority of emm types examined define clones or clonal complexes, similar to other multi-drug-resistant microorganisms.
Abstract: Multilocus sequence typing (MLST) is a tool that can be used to study the molecular epidemiology and population genetic structure of microorganisms. A MLST scheme was developed for Streptococcus pyogenes and the nucleotide sequences of internal fragments of seven selected housekeeping loci were obtained for 212 isolates. A total of 100 unique combinations of housekeeping alleles (allelic profiles) were identified. The MLST scheme was highly concordant with several other typing methods. The emm type, corresponding to a locus that is subject to host immune selection, was determined for each isolate; of the >150 distinct emm types identified to date, 78 are represented in this report. For a given emm type, the majority of isolates shared five or more of the seven housekeeping alleles. Stable associations between emm type and MLST were documented by comparing isolates obtained decades apart and/or from different continents. For the 33 emm types for which more than one isolate was examined, only five emm types were present on widely divergent backgrounds, differing at four or more of the housekeeping loci. The findings indicate that the majority of emm types examined define clones or clonal complexes. In addition, an MLST database is made accessible to investigators who seek to characterize other isolates of this species via the internet (http://www.mlst.net).

Journal ArticleDOI
TL;DR: It is suggested that a subset of resident luminal bacteria induces colitis, but that a complex interaction of commensal aerobic and anaerobic bacteria provides the constant antigenic drive for chronic immune-mediated colonic inflammation.
Abstract: Resident bacteria are incriminated in the pathogenesis of experimental colitis and inflammatory bowel diseases. We investigated the relative roles of various enteric bacteria populations in the induction and perpetuation of experimental colitis. HLA-B27 transgenic rats received antibiotics (ciprofloxacin, metronidazole, or vancomycin-imipenem) in drinking water or water alone in either prevention or treatment protocols. Mice were treated similarly with metronidazole or vancomycin-imipenem before or after receiving 5% dextran sodium sulfate (DSS). Germfree transgenic rats were colonized with specific-pathogen-free enteric bacteria grown overnight either in anaerobic or aerobic atmospheres. Nontransgenic rats colonized with anaerobic bacteria served as negative controls. Although preventive metronidazole significantly attenuated colitis in transgenic rats and DSS-treated mice, it had no therapeutic benefit once colitis was established. Ciprofloxacin also partially prevented but did not treat colitis in B27 transgenic rats. In both animal models vancomycin-imipenem most effectively prevented and treated colitis. Germfree transgenic rats reconstituted with enteric bacteria grown under anaerobic conditions had more aggressive colitis than those associated with aerobic bacteria. These results suggest that a subset of resident luminal bacteria induces colitis, but that a complex interaction of commensal aerobic and anaerobic bacteria provides the constant antigenic drive for chronic immune-mediated colonic inflammation.

Journal ArticleDOI
TL;DR: Both rabbit and human anti-AMA1 antibodies were found to be strongly inhibitory to the invasion of erythrocytes by merozoites from both the homologous and two heterologous lines of P. falciparum.
Abstract: Plasmodium falciparum infections in malaria-naive individuals can lead to severe morbidity, which may be life threatening if untreated. Continued exposure to infection leads to a degree of immunity, and consequently, older children and adults living in areas of endemicity are protected from the severe clinical consequences of infection with P. falciparum. The effector mechanisms that mediate naturally acquired immunity to malaria are not completely understood, but antibodies to the asexual blood stage parasites play a role. This has been most clearly demonstrated by the reduction of parasitemias following the passive immunization of children with clinical malaria with immunoglobulin G (IgG) from malaria-immune adults (6, 7, 32). Antigens recognized by antibodies that are active in passive-immunization experiments are prime candidates for testing in a vaccine. Studies with an assay for antibody-dependent cellular inhibition have identified antibodies to MSP3 as an active component of passively transferred human IgG (28), but much evidence indicates that other merozoite antigens are capable of inducing antibodies that limit parasite development (13–15, 17, 26, 29, 33, 34). One of the prime candidate antigens for inclusion in a malaria vaccine is apical membrane antigen 1 (AMA1). AMA1 is an 83-kDa antigen that is synthesized in mature stages of the parasite and is initially localized in the necks of the rhoptry organelles (9, 30). At about the time of merozoite release, the full-length 83-kDa molecule is localized at the apical pole, and an N-terminally processed form of 66 kDa can be detected distributed around the merozoite surface (27, 30). Although the biological function of AMA1 is unknown, its location and stage specificity suggest that it may be involved in the process of erythrocyte invasion. AMA1 is one of only a few asexual blood stage antigens that have been identified in all Plasmodium species examined (42), and this has enabled the vaccine potential of AMA1 to be investigated using various animal models. Active immunization of monkeys or mice with either native (11) or recombinant (2, 8) forms of AMA1 has protected these animals against simian and rodent parasites, respectively. Much evidence indicates that anti-AMA1 antibodies mediate protection. Monoclonal antibodies raised against P. falciparum AMA1 and against PK66, the Plasmodium knowlesi homologue of AMA1, inhibit merozoite invasion in vitro (20, 35). Furthermore, passive immunization of AMA1-specific polyclonal antibodies into Plasmodium chabaudi-infected mice prevented lethal parasitemias (2). These protective antibodies react with conformational epitopes stabilized by disulfide bonds, as immunization with the reduced and alkylated AMA1 failed to protect mice against challenge with P. chabaudi (10). The sequence of AMA1 is relatively conserved among various Plasmodium spp., with the level of amino acid sequence identity exceeding 50% in pairwise comparisons among all known sequences (5, 12, 24, 25, 31, 42). AMA1 lacks the sequence repeats and marked polymorphisms found in other malaria antigens, such as the merozoite surface antigens MSP1 and MSP2 (3). However, some sequence variation, resulting from point mutations, is observed among alleles of AMA1 in P. falciparum (25, 30, 36), P. knowlesi (43), Plasmodium vivax (5), and P. chabaudi (10), and studies with the P. chabaudi-mouse model indicate that this variation is immunologically significant. Mice immunized with AMA1 or receiving passively transferred anti-AMA1 antibodies were not protected from a heterologous strain of P. chabaudi parasites, indicating that the protective antibodies recognized strain-specific epitopes. Early clinical trials with AMA1 have commenced, and it is important to determine the effect of sequence diversity on the efficacy of the recombinant AMA1 as a vaccine against P. falciparum. In this study, we demonstrate that immunization of rabbits with the refolded P. falciparum AMA1 ectodomain (the vaccine molecule) induces antibodies that inhibit merozoite invasion in vitro. The refolded antigen has also been used to affinity purify AMA1-specific antibodies from the plasma of individuals who have been exposed to chronic malaria infections. These naturally occurring human antibodies were also able to inhibit the invasion of erythrocytes by P. falciparum merozoites.

Journal ArticleDOI
TL;DR: PerR of S. aureus may act as a redox sentinel protein during infection, analogous to the in vitro activities of OxyR and PerR ofEscherichia coli and Bacillus subtilis, respectively, but it differs in its response to the metal balance within the cell and has the added capability of regulating iron uptake and storage.
Abstract: The Staphylococcus aureus genome encodes three ferric uptake regulator (Fur) homologues: Fur, PerR, and Zur. To determine the exact role of PerR, we inactivated the gene by allelic replacement using a kanamycin cassette, creating strain MJH001 (perR). PerR was found to control transcription of the genes encoding the oxidative stress resistance proteins catalase (KatA), alkyl hydroperoxide reductase (AhpCF), bacterioferritin comigratory protein (Bcp), and thioredoxin reductase (TrxB). Furthermore, PerR regulates transcription of the genes encoding the iron storage proteins ferritin (Ftn) and the ferritin-like Dps homologue, MrgA. Transcription of perR was autoregulated, and PerR repressed transcription of the iron homeostasis regulator Fur, which is a positive regulator of catalase expression. PerR functions as a manganese-dependent, transcriptional repressor of the identified regulon. Elevated iron concentrations produced induction of the PerR regulon. PerR may act as a peroxide sensor, since addition of external hydrogen peroxide to 8325-4 (wild type) resulted in increased transcription of most of the PerR regulon, except for fur and perR itself. The PerRregulated katA gene encodes the sole catalase of S. aureus, which is an important starvation survival determinant but is surprisingly not required for pathogenicity in a murine skin abscess model of infection. In contrast, PerR is not necessary for starvation survival but is required for full virulence (P < 0.005) in this model of infection. PerR of S. aureus may act as a redox sentinel protein during infection, analogous to the in vitro activities of OxyR and PerR of Escherichia coli and Bacillus subtilis, respectively. However, it differs in its response to the metal balance within the cell and has the added capability of regulating iron uptake and storage. The relationship between invading pathogenic bacteria and their host is dynamic, with bacteria having to rapidly adapt to the hostile and changing environment which they have entered. Metal ion acquisition is essential for pathogen proliferation, and limitation is a nonspecific host response to infection (10), which reduces the ability of bacteria to replicate and increases their susceptibility to clearance by the immune system. Iron is an essential nutrient in vivo and together with manganese is an important cofactor for bacterial antioxidant defense enzymes, e.g., catalase, peroxidase, and superoxide dismutase (SOD) (1, 48). Consequently, bacteria have evolved specialized proteins that monitor metal ion levels and respond accordingly by regulating gene expression (31, 51). These metalloregulatory proteins cluster in four distinct families represented by Fur (ferric uptake regulator), DtxR (diphtheria toxin repressor), MerR, and ArsR (53). The well-characterized DtxR from Corynebacterium diphtheriae (61) and Fur (26) have similar roles with respect to iron homeostasis and toxin synthesis; however, these two proteins share little amino acid homology, and their consensus DNA binding sequences are different. Four metal ion-dependent repressors have been identified in Bacillus subtilis: three Fur-like proteins, Fur, PerR, and Zur (13, 28), and the recently identified DtxR-like protein, MntR (53). Fur controls iron homeostasis via a regulon of iron trans

Journal ArticleDOI
TL;DR: These toxin-mediated effects on actin and TJ structure provide a mechanism for early events in the pathophysiology of pseudomembranous colitis.
Abstract: The anaerobic bacterium Clostridium difficile is the etiologic agent of pseudomembranous colitis. C. difficile toxins TcdA and TcdB are UDP-glucosyltransferases that monoglucosylate and thereby inactivate the Rho family of GTPases (W. P. Ciesla, Jr., and D. A. Bobak, J. Biol. Chem. 273:16021-16026, 1998). We utilized purified reference toxins of C. difficile, TcdA-10463 (TcdA) and TcdB-10463 (TcdB), and a model intestinal epithelial cell line to characterize their influence on tight-junction (TJ) organization and hence to analyze the mechanisms by which they contribute to the enhanced paracellular permeability and disease pathophysiology of pseudomembranous colitis. The increase in paracellular permeability induced by TcdA and TcdB was associated with disorganization of apical and basal F-actin. F-actin restructuring was paralleled by dissociation of occludin, ZO-1, and ZO-2 from the lateral TJ membrane without influencing the subjacent adherens junction protein, E-cadherin. In addition, we observed decreased association of actin with the TJ cytoplasmic plaque protein ZO-1. Differential detergent extraction and fractionation in sucrose density gradients revealed TcdB-induced redistribution of occludin and ZO-1 from detergent-insoluble fractions constituting "raft-like" membrane microdomains, suggesting an important role of Rho proteins in maintaining the association of TJ proteins with such microdomains. These toxin-mediated effects on actin and TJ structure provide a mechanism for early events in the pathophysiology of pseudomembranous colitis.

Journal ArticleDOI
TL;DR: Enterococcus faecalis bacteria isolated from patients with bacteremia, endocarditis, and urinary tract infections more frequently express the surface protein Esp than do fecal isolates, and it contributes to colonization and persistence of E. Faecalis at this site.
Abstract: Enterococcus faecalis bacteria isolated from patients with bacteremia, endocarditis, and urinary tract infections more frequently express the surface protein Esp than do fecal isolates. To assess the role of Esp in colonization and persistence of E. faecalis in an animal model of ascending urinary tract infection, we compared an Esp+ strain of E. faecalis to its isogenic Esp-deficient mutant. Groups of CBA/J mice were challenged transurethrally with 108 CFU of either the parent or mutant strain, and bacteria in the urine, bladder, and kidneys were enumerated 5 days postinfection. Significantly higher numbers of bacteria were recovered from the bladder and urine of mice challenged with the parent strain than from the bladder and urine of mice challenged with the mutant. Colonization of the kidney, however, was not significantly different between the parent and mutant strains. Histopathological evaluations of kidney and bladder tissue done at 5 days postinfection did not show marked histopathological changes consistent with inflammation, mucosal hyperplasia, or apoptosis, and there was no observable difference between the mice challenged with the parent and those challenged with the mutant. We conclude that, while Esp does not influence histopathological changes associated with acute urinary tract infections, it contributes to colonization and persistence of E. faecalis at this site.

Journal ArticleDOI
TL;DR: DNA methylation provides a mechanism by which additional information is imparted to DNA, and such epigenetic information can alter the timing and targeting of cellular events.
Abstract: DNA methylation provides a mechanism by which additional information is imparted to DNA, and such epigenetic information can alter the timing and targeting of cellular events ([47][1]). DNA methylation occurs throughout the living world, including bacteria, plants, and mammals. Until recently,

Journal ArticleDOI
TL;DR: The results indicated that the majority of toddlers with an rSBA titer between 8 and 64, and some of those with an hSBA result of <4, have mounted a protective immune response with the induction of immunological memory.
Abstract: The antibody data supporting the use of meningococcal serogroup C conjugate (MCC) vaccines in the United Kingdom were generated by serum bactericidal assay (SBA) using rabbit complement (rSBA). This may give higher titers than those obtained with human complement (hSBA), for which the "gold standard" correlate of protection for meningococcal C disease is a titer of > or =4. Comparison of rSBA and hSBA titers in sera from unvaccinated adults with an rSBA titer of > or =8 showed that for 93% (27 of 29) the titer was > or =4 by hSBA, confirming natural protection. Furthermore, sera from MCC vaccinees showed that an rSBA titer of or =128 discriminated susceptibility and protection well (85% with rSBA titers of or =128 had hSBA titers of > or =4). However, discrimination was poor in the rSBA titer range 8 to 64, with only 60% having hSBA titers of > or =4. In such cases we propose that protection can be assumed if there is a fourfold rise in titer between pre- and postvaccination sera or if there is a characteristic booster response to a polysaccharide challenge dose with, if available, evidence of antibody avidity maturation or an hSBA titer of result > or =4. Applying these criteria to toddlers, 10 to 40% of whom had titers in the range 8 to 64 after a single dose of MCC vaccine, showed that 94% had a fourfold rise in titer, including 98% of those in the titer range 8 to 64. In addition, of those with titers of or =128 after a 10-microg polysaccharide booster dose, compared with only 7% of unprimed age-matched toddlers given a full 50-microg dose. Furthermore, the increase in geometric mean avidity index pre- and postbooster was independent of post-primary MCC titer. These results indicated that the majority of toddlers with an rSBA titer between 8 and 64, and some of those with an hSBA result of <4, have mounted a protective immune response with the induction of immunological memory.

Journal ArticleDOI
TL;DR: It is shown here that, when applied individually, purified CdtA, CdtB, or CdtC does not exhibit toxic activity and, when combined, these genes interact with one another to form an active tripartite holotoxin that exhibits full cellular toxicity.
Abstract: Campylobacter jejuni encodes a cytolethal distending toxin (CDT) that causes cells to arrest in the G2/M transition phase of the cell cycle Highly related toxins are also produced by other important bacterial pathogens CDT activity requires the function of three genes: cdtA, cdtB, and cdtC Recent studies have established that CdtB is the active subunit of CDT, exerting its effect as a nuclease that damages the DNA and triggers cell cycle arrest Microinjection of CdtB into target cells led to G2/M arrest and cytoplasmic distention, in a manner indistinguishable from that caused by CDT treatment Despite this progress, nothing is known about the composition of the CDT holotoxin or the function of CdtA and CdtC We show here that, when applied individually, purified CdtA, CdtB, or CdtC does not exhibit toxic activity In contrast, CdtA, CdtB, and CdtC when combined, interact with one another to form an active tripartite holotoxin that exhibits full cellular toxicity CdtA has a domain that shares similarity with the B chain of ricin-related toxins We therefore proposed that CDT is a tripartite toxin composed of CdtB as the enzymatically active subunit and of CdtA and CdtC as the heterodimeric B subunit required for the delivery of CdtB

Journal ArticleDOI
TL;DR: The dynamic nature of the B. burgdorferi genome may provide the genetic heterogeneity necessary for survival in the diverse milieus that this pathogen occupies in nature and may contribute to tropism in certain mammalian host tissues.
Abstract: Previous reports indicated a correlation between loss of plasmids and decreased infectivity of Borrelia burgdorferi strain B31, suggesting that plasmids may encode proteins that are required for pathogenesis. In this study, we expand on this correlation. Using the B. burgdorferi genomic sequence, we designed primers specific for each plasmid, and by using PCR we catalogued 11 linear and 2 circular plasmids from 49 clonal isolates of a mid-passage B. burgdorferi strain B31, initially derived from infected mouse skin, and 20 clones obtained from mouse skin infected with a low-passage isolate of B. burgdorferi strain B31. Among the 69 clones analyzed, nine distinct genotypes were identified relative to wild-type B. burgdorferi strain B31. Among the nine clonal genotypes obtained, only the 9-kb circular plasmid (cp9), the 25-kb linear plasmid (lp25), and either the 28-kb linear plasmid 1 or 4 (lp28-1 and lp28-4, respectively) were missing, in different combinations. We compared the infectivity of the wild-type strain, containing all known B. burgdorferi plasmids, with those of single mutants lacking either lp28-1, lp28-4, or lp25 and a double mutant missing both cp9 and lp28-1. The infectivity data indicated that B. burgdorferi strain B31 cells lacking lp28-4 were modestly attenuated in all tissues analyzed, whereas samples missing lp25 were completely attenuated in all tissues, even at the highest inoculum tested. Isolates without lp28-1 infected the joint tissue yet were not able to infect other tissues as effectively. In addition, we have observed a selection in vivo in the skin, bladder, and joint for cells containing lp25 and in the skin and bladder for cells containing lp28-1, indicating that lp25 and lp28-1 encode proteins required for colonization and short-term maintenance in these mammalian tissues. In contrast, there was no selection in the joint for cells containing lp28-1, suggesting that genes on lp28-1 are not required for colonization of B. burgdorferi within the joint. These observations imply that the dynamic nature of the B. burgdorferi genome may provide the genetic heterogeneity necessary for survival in the diverse milieus that this pathogen occupies in nature and may contribute to tropism in certain mammalian host tissues.

Journal ArticleDOI
TL;DR: Mouse virulence assays indicated that mutants defective in a single iron transport system were able to infect the kidney when inoculated as a pure culture but were unable to efficiently compete with the wild-type strain in mixed infections, indicating a role for TonB-dependent systems in the virulence of uropathogenic E. coli strains.
Abstract: The uropathogenic Escherichia coli strain CFT073 has multiple iron acquisition systems, including heme and siderophore transporters. A tonB mutant derivative of CFT073 failed to use heme as an iron source or to utilize the siderophores enterobactin and aerobactin, indicating that transport of these compounds in CFT073 is TonB dependent. The TonB− derivative showed reduced virulence in a mouse model of urinary tract infection. Virulence was restored when the tonB gene was introduced on a plasmid. To determine the importance of the individual TonB-dependent iron transport systems during urinary tract infections, mutants defective in each of the CFT073 high-affinity iron transport systems were constructed and tested in the mouse model. Mouse virulence assays indicated that mutants defective in a single iron transport system were able to infect the kidney when inoculated as a pure culture but were unable to efficiently compete with the wild-type strain in mixed infections. These results indicate a role for TonB-dependent systems in the virulence of uropathogenic E. coli strains.

Journal ArticleDOI
TL;DR: The tissue association in the mouse cecum of a nonflagellated strain was 10-fold lower than that of a flageLLated strain belonging to the same serogroup, confirming the role of flagella in adherence.
Abstract: In vitro and in vivo adhesive properties of flagella and recombinant flagellin FliC and flagellar cap FliD proteins of Clostridium difficile were analyzed. FliC, FliD, and crude flagella adhered in vitro to axenic mouse cecal mucus. Radiolabeled cultured cells bound to a high degree to FliD and weakly to flagella deposited on a membrane. The tissue association in the mouse cecum of a nonflagellated strain was 10-fold lower than that of a flagellated strain belonging to the same serogroup, confirming the role of flagella in adherence.

Journal ArticleDOI
TL;DR: It is established that the Cu,Zn superoxide dismutase contributes to the resistance of M. tuberculosis against oxidative burst products generated by activated macrophages.
Abstract: Macrophages produce reactive oxygen species and reactive nitrogen species that have potent antimicrobial activity. Resistance to killing by macrophages is critical to the virulence of Mycobacterium tuberculosis. M. tuberculosis has two genes encoding superoxide dismutase proteins, sodA and sodC. SodC is a Cu,Zn superoxide dismutase responsible for only a minor portion of the superoxide dismutase activity of M. tuberculosis. However, SodC has a lipoprotein binding motif, which suggests that it may be anchored in the membrane to protect M. tuberculosis from reactive oxygen intermediates at the bacterial surface. To examine the role of the Cu,Zn superoxide dismutase in protecting M. tuberculosis from the toxic effects of exogenously generated reactive oxygen species, we constructed a null mutation in the sodC gene. In this report, we show that the M. tuberculosis sodC mutant is readily killed by superoxide generated externally, while the isogenic parental M. tuberculosis is unaffected under these conditions. Furthermore, the sodC mutant has enhanced susceptibility to killing by gamma interferon (IFN-γ)-activated murine peritoneal macrophages producing oxidative burst products but is unaffected by macrophages not activated by IFN-γ or by macrophages from respiratory burst-deficient mice. These observations establish that the Cu,Zn superoxide dismutase contributes to the resistance of M. tuberculosis against oxidative burst products generated by activated macrophages.

Journal ArticleDOI
TL;DR: It was determined by enzyme-linked immunosorbent assay and immunoelectron microscopy that the inactivated gene was involved in the production of a major surface polysaccharide and facilitated the identification of an important virulence determinant in B. pseudomallei.
Abstract: Burkholderia pseudomallei, the etiologic agent of melioidosis, is responsible for a broad spectrum of illnesses in humans and animals particularly in Southeast Asia and northern Australia, where it is endemic. Burkholderia thailandensis is a nonpathogenic environmental organism closely related to B. pseudomallei. Subtractive hybridization was carried out between these two species to identify genes encoding virulence determinants in B. pseudomallei. Screening of the subtraction library revealed A-T-rich DNA sequences unique to B. pseudomallei, suggesting they may have been acquired by horizontal transfer. One of the subtraction clones, pDD1015, encoded a protein with homology to a glycosyltransferase from Pseudomonas aeruginosa. This gene was insertionally inactivated in wild-type B. pseudomallei to create SR1015. It was determined by enzyme-linked immunosorbent assay and immunoelectron microscopy that the inactivated gene was involved in the production of a major surface polysaccharide. The 50% lethal dose (LD50) for wild-type B. pseudomallei is <10 CFU; the LD50 for SR1015 was determined to be 3.5 3 10 5 CFU, similar to that of B. thailandensis (6.8 3 10 5 CFU). DNA sequencing of the region flanking the glycosyltransferase gene revealed open reading frames similar to capsular polysaccharide genes in Haemophilus influenzae, Escherichia coli, and Neisseria meningitidis. In addition, DNA from Burkholderia mallei and Burkholderia stabilis hybridized to a glycosyltransferase fragment probe, and a capsular structure was identified on the surface of B. stabilis via immunoelectron microscopy. Thus, the combination of PCR-based subtractive hybridization, insertional inactivation, and animal virulence studies has facilitated the identification of an important virulence determinant in B. pseudomallei. Burkholderia pseudomallei, the causative agent of melioidosis, is a gram-negative, facultatively anaerobic, motile bacillus that is commonly found in the soil and stagnant waters in Southeast Asia and northern Australia. Infection by B. pseudomallei is often due to either direct inoculation into wounds and skin abrasions or to inhalation of contaminated material (11, 24, 30). This would explain the prevalence of the disease among rice farmers as well as helicopter pilots in the Vietnam War who developed melioidosis due to inhalation of contaminated dust (24, 47). Melioidosis may present as an acute pneumonia or an acute septicemia, which is the most severe form of the disease. The disease may also manifest as a chronic infection involving long-lasting suppurative abscesses in numerous sites in the body. Infection with B. pseudomallei may even result in a subclinical infection and remain undetected for a number of years. Both the chronic and subclinical forms generally remain undiagnosed until activated by a traumatic event or a decrease in immunocompetence (25). Both secreted and cell-associated antigens have been identified in B. pseudomallei. Cell-associated antigens include exopolysaccharide (EPS) and lipopolysaccharide (LPS) (5, 8, 51). The EPS produced by B. pseudomallei is an unbranched polymer of repeating tetrasaccharide units with the structure -3)

Journal ArticleDOI
TL;DR: Recovery of the bacteria from the animals showed that the bioluminescent signal corresponded to the number of CFU and that the lux construct was highly stable even after several days in vivo, suggesting that thislux transposon will greatly expand the ability to evaluate drug efficacy against gram-positive bacteria in living animals using biolumscence.
Abstract: Animal studies with Streptococcus pneumoniae have provided valuable models for drug development. In order to monitor long-term pneumococcal infections noninvasively in living mice, a novel gram-positive lux transposon cassette, Tn4001 luxABCDE Km(r), that allows random integration of lux genes onto the bacterial chromosome was constructed. The cassette was designed so that the luxABCDE and kanamycin resistance genes were linked to form a single promoterless operon. Bioluminescence and kanamycin resistance only occur in a bacterial cell if this operon has transposed downstream of a promoter on the bacterium's chromosome. S. pneumoniae D39 was transformed with plasmid pAUL-A Tn4001 luxABCDE Km(r), and a number of highly bioluminescent colonies were recovered. Genomic DNA from the brightest D39 strain was used to transform a number of clinical S. pneumoniae isolates, and several of these strains were tested in animal models, including a pneumococcal lung infection model. Strong bioluminescent signals were seen in the lungs of the animals containing these pneumococci, allowing the course and antibiotic treatment of the infections to be readily monitored in real time in the living animals. Recovery of the bacteria from the animals showed that the bioluminescent signal corresponded to the number of CFU and that the lux construct was highly stable even after several days in vivo. We believe that this lux transposon will greatly expand the ability to evaluate drug efficacy against gram-positive bacteria in living animals using bioluminescence.

Journal ArticleDOI
TL;DR: It is demonstrated that a transposon insertion in a PE_PGRS gene (1818PE_ PGRS) found in Mycobacterium bovis BCG Pasteur, which is the BCG homologue of the M. tuberculosis H37Rv gene Rv1818c, introduces new phenotypic properties to this BCG strain.
Abstract: The elucidation of the genomic sequence of Mycobacterium tuberculosis revealed the presence of a novel multigene family designated PE/PE_PGRS that encodes numerous, highly related proteins of unknown function. In this study, we demonstrate that a transposon insertion in a PE_PGRS gene (1818PE_PGRS) found in Mycobacterium bovis BCG Pasteur, which is the BCG homologue of the M. tuberculosis H37Rv gene Rv1818c, introduces new phenotypic properties to this BCG strain. These properties include dispersed growth in liquid medium and reduced infection of macrophages. Complementation of the 1818PE_PGRS::Tn5367 mutant with the wild-type gene restores both aggregative growth (clumping) in liquid medium and reestablishes infectivity of macrophages to levels equivalent to those for the parent BCG strain. Western blot analysis using antisera raised against the 1818PE_PGRS protein shows that PE_PGRS proteins are found in cell lysates of BCG and M. tuberculosis H37Ra and in the cell wall fraction of M. tuberculosis H37Rv. Moreover, immunofluorescent labeling of mycobacteria indicates that certain PE_PGRS proteins are localized at the cell surface of BCG and M. tuberculosis. Together these results suggest that certain PE_PGRS proteins may be found at the surface of mycobacteria and influence both cell surface interactions among mycobacteria as well as the interactions of mycobacteria with macrophages.

Journal ArticleDOI
TL;DR: The results demonstrate an additional role for capsule in the pathogenesis of Streptococcus pneumoniae and show that isolates producing reduced levels of capsule can remain highly virulent.
Abstract: Nasopharyngeal colonization is a necessary first step in the pathogenesis of Streptococcus pneumoniae. Using isolates containing defined mutations in the S. pneumoniae capsule locus, we found that expression of the capsular polysaccharide is essential for colonization by the type 2 strain D39 and the type 3 strains A66 and WU2. Nonencapsulated derivatives of each of these strains were unable to colonize BALB/cByJ mice. Similarly, type 3 mutants that produced < 6% of the parental amounts of capsule could not colonize. Capsule production equivalent to that of the parent strain was not required for efficient colonization, however, as type 3 mutants producing approximately 20% of the parental amounts of capsule colonized as effectively as the parent. This 80% reduction in capsule level had only a minimal effect on intraperitoneal virulence but caused a significant reduction in virulence via the intravenous route. In the X-linked immunodeficient CBA/N mouse, the type 3 mutant producing ~20% of the parental amount of capsule (AM188) was diminished in its ability to cause invasive disease and death following intranasal inoculation. Following intravenous or intraperitoneal challenge, however, only extended survival times were observed. Our results demonstrate an additional role for capsule in the pathogenesis of S. pneumoniae and show that isolates producing reduced levels of capsule can remain highly virulent.

Journal ArticleDOI
TL;DR: It is shown that proC and trpD genes are essential for the virulence of M. tuberculosis, and mutants with disruptions in either of these genes show strong potential as vaccine candidates.
Abstract: Auxotrophic mutants of Mycobacterium tuberculosis have been proposed as new vaccine candidates. We have analyzed the virulence and vaccine potential of M. tuberculosis strains containing defined mutations in genes involved in methionine (metB), proline (proC), or tryptophan (trpD) amino acid biosynthesis. The metB mutant was a prototrophic strain, whereas the proC and trpD mutants were auxotrophic for proline and tryptophan, respectively. Following infection of murine bone marrow-derived macrophages, H37Rv and the metB mutant strain survived intracellularly for over 10 days, whereas over 90% of proC and trpD mutants were killed during this time. In SCID mice, both H37Rv and the metB mutant were highly virulent, with mouse median survival times (MST) of 28.5 and 42 days, respectively. The proC mutant was significantly attenuated (MST, 130 days), whereas the trpD mutant was essentially avirulent in an immunocompromised host. Following infection of immunocompetent DBA mice with H37Rv, mice survived for a median of 83.5 days and the metB mutant now showed a clear reduction in virulence, with two of five infected mice surviving for 360 days. Both proC and trpD mutants were avirulent (MST of >360 days). In vaccination studies, prior infection with either the proC or trpD mutant gave protection equivalent (proC mutant) to or better (trpD mutant) than BCG against challenge with M. tuberculosis H37Rv. In summary, proC and trpD genes are essential for the virulence of M. tuberculosis, and mutants with disruptions in either of these genes show strong potential as vaccine candidates.