scispace - formally typeset
Search or ask a question

Showing papers in "Mutation Research in 2007"


Journal ArticleDOI
TL;DR: It is estimated that about 80% of nullizygous, heterozygous and functionally dominant gene-common disease associations may be discovered in this "cohort allelic sums test" or "CAST".
Abstract: A method is described to discover if a gene carries one or more allelic mutations that confer risk for any specified common disease. The method does not depend upon genetic linkage of risk-conferring mutations to high frequency genetic markers such as single nucleotide polymorphisms. Instead, the sums of allelic mutation frequencies in case and control cohorts are determined and a statistical test is applied to discover if the difference in these sums is greater than would be expected by chance. A statistical model is presented that defines the ability of such tests to detect significant gene-disease relationships as a function of case and control cohort sizes and key confounding variables: zygosity and genicity, environmental risk factors, errors in diagnosis, limits to mutant detection, linkage of neutral and risk-conferring mutations, ethnic diversity in the general population and the expectation that among all exonic mutants in the human genome greater than 90% will be neutral with regard to any effect on disease risk. Means to test the null hypothesis for, and determine the statistical power of, each test are provided. For this "cohort allelic sums test" or "CAST", the statistical model and test are provided as an Excel program, CASTAT(c) at . Based on genetics, technology and statistics, a strategy of enumerating the mutant alleles carried in the exons and splice sites of the estimated approximately 25,000 human genes in case cohort samples of 10,000 persons for each of 100 common diseases is proposed and evaluated: A wide range of possible conditions of multi-allelic or mono-allelic and monogenic, multigenic or polygenic (including epistatic) risk are found to be detectable using the statistical criteria of 1 or 10 "false positive" gene associations approximately 25,000 gene-disease pair-wise trials and a statistical power of >0.8. Using estimates of the distribution of both neutral and gene-inactivating nondeleterious mutations in humans and the sensitivity of the test to multigenic or multicausal risk, it is estimated that about 80% of nullizygous, heterozygous and functionally dominant gene-common disease associations may be discovered. Limitations include relative insensitivity of CAST to about 60% of possible associations given homozygous (wild type) risk and, more rarely, other stochastic limits when the frequency of mutations in the case cohort approaches that of the control cohort and biases such as absence of genetic risk masked by risk derived from a shared cultural environment.

509 citations


Journal ArticleDOI
TL;DR: Genetic, biochemical, and structural studies demonstrate that Chd proteins are important regulators of transcription and play critical roles during developmental processes and are also implicated in human disease.
Abstract: Chromatin remodeling enzymes contribute to the dynamic changes that occur in chromatin structure during cellular processes such as transcription, recombination, repair, and replication. Members of the chromodomain helicase DNA-binding (Chd) family of enzymes belong to the SNF2 superfamily of ATP-dependent chromatin remodelers. The Chd proteins are distinguished by the presence of two N-terminal chromodomains that function as interaction surfaces for a variety of chromatin components. Genetic, biochemical, and structural studies demonstrate that Chd proteins are important regulators of transcription and play critical roles during developmental processes. Numerous Chd proteins are also implicated in human disease.

392 citations


Journal ArticleDOI
TL;DR: It was concluded that better guidance on the likely mechanisms resulting in positive results that are not biologically relevant for human health, and how to obtain evidence for those mechanisms, is needed both for practitioners and regulatory reviewers.
Abstract: Workshop participants agreed that genotoxicity tests in mammalian cells in vitro produce a remarkably high and unacceptable occurrence of irrelevant positive results (e.g. when compared with rodent carcinogenicity). As reported in several recent reviews, the rate of irrelevant positives (i.e. low specificity) for some studies using in vitro methods (when compared to this "gold standard") means that an increased number of test articles are subjected to additional in vivo genotoxicity testing, in many cases before, e.g. the efficacy (in the case of pharmaceuticals) of the compound has been evaluated. If in vitro tests were more predictive for in vivo genotoxicity and carcinogenicity (i.e. fewer false positives) then there would be a significant reduction in the number of animals used. Beyond animal (or human) carcinogenicity as the "gold standard", it is acknowledged that genotoxicity tests provide much information about cellular behaviour, cell division processes and cellular fate to a (geno)toxic insult. Since the disease impact of these effects is seldom known, and a verification of relevant toxicity is normally also the subject of (sub)chronic animal studies, the prediction of in vivo relevant results from in vitro genotoxicity tests is also important for aspects that may not have a direct impact on carcinogenesis as the ultimate endpoint of concern. In order to address the high rate of in vitro false positive results, a 2-day workshop was held at the European Centre for the Validation of Alternative Methods (ECVAM), Ispra, Italy in April 2006. More than 20 genotoxicity experts from academia, government and industry were invited to review data from the currently available cell systems, to discuss whether there exist cells and test systems that have a reduced tendency to false positive results, to review potential modifications to existing protocols and cell systems that might result in improved specificity, and to review the performance of some new test systems that show promise of improved specificity without sacrificing sensitivity. It was concluded that better guidance on the likely mechanisms resulting in positive results that are not biologically relevant for human health, and how to obtain evidence for those mechanisms, is needed both for practitioners and regulatory reviewers. Participants discussed the fact that cell lines commonly used for genotoxicity testing have a number of deficiencies that may contribute to the high false positive rate. These include, amongst others, lack of normal metabolism leading to reliance on exogenous metabolic activation systems (e.g. Aroclor-induced rat S9), impaired p53 function and altered DNA repair capability. The high concentrations of test chemicals (i.e. 10 mM or 5000 microg/ml, unless precluded by solubility or excessive toxicity) and the high levels of cytotoxicity currently required in mammalian cell genotoxicity tests were discussed as further potential sources of false positive results. Even if the goal is to detect carcinogens with short in vitro tests under more or less acute conditions, it does not seem logical to exceed the capabilities of cellular metabolic turnover, activation and defence processes. The concept of "promiscuous activation" was discussed. For numerous mutagens, the decisive in vivo enzymes are missing in vitro. However, if the substrate concentration is increased sufficiently, some other enzymes (that are unimportant in vivo) may take over the activation-leading to the same or a different active metabolite. Since we often do not use the right enzyme systems for positive controls in vitro, we have to rely on their promiscuous activation, i.e. to use excessive concentrations to get an empirical correlation between genotoxicity and carcinogenicity. A thorough review of published and industry data is urgently needed to determine whether the currently required limit concentration of 10mM or 5000 microg/ml, and high levels of cytotoxicity, are necessary for the detection of in vivo genotoxins and DNA-reactive, mutagenic carcinogens. In addition, various measures of cytotoxicity are currently allowable under OECD test guidelines, but there are few comparative data on whether different measures would result in different maximum concentrations for testing. A detailed comparison of cytotoxicity assessment strategies is needed. An assessment of whether test endpoints can be selected that are not intrinsically associated with cytotoxicity, and therefore are less susceptible to artefacts produced by cytotoxicity, should also be undertaken. There was agreement amongst the workshop participants that cell systems which are p53 and DNA-repair proficient, and have defined Phase 1 and Phase 2 metabolism, covering a broad set of enzyme forms, and used within the context of appropriately set limits of concentration and cytotoxicity, offer the best hope for reduced false positives. Whilst there is some evidence that human lymphocytes are less susceptible to false positives than the current rodent cell lines, other cell systems based on HepG2, TK6 and MCL-5 cells, as well as 3D skin models based on primary human keratinocytes also show some promise. Other human cell lines such as HepaRG, and human stem cells (the target for carcinogenicity) have not been used for genotoxicity investigations and should be considered for evaluation. Genetic engineering is also a valuable tool to incorporate missing enzyme systems into target cells. A collaborative research programme is needed to identify, further develop and evaluate new cell systems with appropriate sensitivity but improved specificity. In order to review current data for selection of appropriate top concentrations, measures and levels of cytotoxicity, metabolism, and to be able to improve existing or validate new assay systems, the participants called for the establishment of an expert group to identify the in vivo genotoxins and DNA-reactive, mutagenic carcinogens that we expect our in vitro genotoxicity assays to detect as well as the non-genotoxins and non-carcinogens we expect them not to detect.

387 citations


Journal ArticleDOI
TL;DR: Both aspects of human type II topoisomerases, which regulate DNA under- and overwinding and resolve knots and tangles in the genetic material, are discussed.
Abstract: Type II topoisomerases are ubiquitous enzymes that play essential roles in a number of fundamental DNA processes. They regulate DNA under- and overwinding, and resolve knots and tangles in the genetic material by passing an intact double helix through a transient double-stranded break that they generate in a separate segment of DNA. Because type II topoisomerases generate DNA strand breaks as a requisite intermediate in their catalytic cycle, they have the potential to fragment the genome every time they function. Thus, while these enzymes are essential to the survival of proliferating cells, they also have significant genotoxic effects. This latter aspect of type II topoisomerase has been exploited for the development of several classes of anticancer drugs that are widely employed for the clinical treatment of human malignancies. However, considerable evidence indicates that these enzymes also trigger specific leukemic chromosomal translocations. In light of the impact, both positive and negative, of type II topoisomerases on human cells, it is important to understand how these enzymes function and how their actions can destabilize the genome. This article discusses both aspects of human type II topoisomerases.

352 citations


Journal ArticleDOI
TL;DR: An overview of the different DNA-binding modes with an emphasis on DNA groove specificity for the groove-binding and intercalation modes is provided.
Abstract: Over the last four decades, intense research has focused on the effects of small organic compounds that noncovalently bind to nucleic acids. These interactions have been shown to disrupt replication and/or transcription culminating in cellular death. Accordingly, DNA binding compounds have potential applications as anti-cancer and anti-viral agents. This report provides an overview of the different DNA-binding modes with an emphasis on DNA groove specificity for the groove-binding and intercalation modes. While most DNA-interacting agents selectively bind to DNA by either groove binding or intercalation, some compounds can exhibit both binding modes. The binding mode with the most favorable free energy for complex formation depends on the DNA sequence and structural features of the bound ligand.

342 citations


Journal ArticleDOI
TL;DR: The current state of knowledge regarding the mechanisms underlying mobile element-based genetic instability in mammals is surveyed and recent evidence suggesting that the endonuclease products of TEs may also play a key role in instigating mammalian genomic instability is considered.
Abstract: The ubiquity of mobile elements in mammalian genomes poses considerable challenges for the maintenance of genome integrity. The predisposition of mobile elements towards participation in genomic rearrangements is largely a consequence of their interspersed homologous nature. As tracts of nonallelic sequence homology, they have the potential to interact in a disruptive manner during both meiotic recombination and DNA repair processes, resulting in genomic alterations ranging from deletions and duplications to large-scale chromosomal rearrangements. Although the deleterious effects of transposable element (TE) insertion events have been extensively documented, it is arguably through post-insertion genomic instability that they pose the greatest hazard to their host genomes. Despite the periodic generation of important evolutionary innovations, genomic alterations involving TE sequences are far more frequently neutral or deleterious in nature. The potentially negative consequences of this instability are perhaps best illustrated by the >25 human genetic diseases that are attributable to TE-mediated rearrangements. Some of these rearrangements, such as those involving the MLL locus in leukemia and the LDL receptor in familial hypercholesterolemia, represent recurrent mutations that have independently arisen multiple times in human populations. While TE-instability has been a potent force in shaping eukaryotic genomes and a significant source of genetic disease, much concerning the mechanisms governing the frequency and variety of these events remains to be clarified. Here we survey the current state of knowledge regarding the mechanisms underlying mobile element-based genetic instability in mammals. Compared to simpler eukaryotic systems, mammalian cells appear to have several modifications to their DNA-repair ensemble that allow them to better cope with the large amount of interspersed homology that has been generated by TEs. In addition to the disruptive potential of nonallelic sequence homology, we also consider recent evidence suggesting that the endonuclease products of TEs may also play a key role in instigating mammalian genomic instability.

292 citations


Journal ArticleDOI
TL;DR: A historical perspective of studies spearheaded by Dr. Anthony V. Carrano and colleagues focusing on SCE as a genetic outcome, and the role of the single-strand break DNA repair protein XRCC1 in suppressing SCE is presented.
Abstract: Sister-chromatid exchange (SCE) is the process whereby, during DNA replication, two sister chromatids break and rejoin with one another, physically exchanging regions of the parental strands in the duplicated chromosomes. This process is considered to be conservative and error-free, since no information is generally altered during reciprocal interchange by homologous recombination. Upon the advent of non-radiolabel detection methods for SCE, such events were used as genetic indicators for potential genotoxins/mutagens in laboratory toxicology tests, since, as we now know, most forms of DNA damage induce chromatid exchange upon replication fork collapse. Much of our present understanding of the mechanisms of SCE stems from studies involving nonhuman vertebrate cell lines that are defective in processes of DNA repair and/or recombination. In this article, we present a historical perspective of studies spearheaded by Dr. Anthony V. Carrano and colleagues focusing on SCE as a genetic outcome, and the role of the single-strand break DNA repair protein XRCC1 in suppressing SCE. A more general overview of the cellular processes and key protein "effectors" that regulate the manifestation of SCE is also presented.

253 citations


Journal ArticleDOI
TL;DR: The BER pathway is discussed in greater detail in this review than other repair pathways including direct reversal, nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination and non-homologous end joining are discussed.
Abstract: Neuronal DNA repair remains one of the most exciting areas for investigation, particularly as a means to compare the DNA repair response in mitotic (cancer) vs. post-mitotic (neuronal) cells. In addition, the role of DNA repair in neuronal cell survival and response to aging and environmental insults is of particular interest. DNA damage caused by reactive oxygen species (ROS) such as generated by mitochondrial respiration includes altered bases, abasic sites, and single- and double-strand breaks which can be prevented by the DNA base excision repair (BER) pathway. Oxidative stress accumulates in the DNA of the human brain over time especially in the mitochondrial DNA (mtDNA) and is proposed to play a critical role in aging and in the pathogenesis of several neurological disorders including Parkinson's disease, ALS, and Alzheimer's diseases. Because DNA damage accumulates in the mtDNA more than nuclear DNA, there is increased interest in DNA repair pathways and the consequence of DNA damage in the mitochondria of neurons. The type of damage that is most likely to occur in neuronal cells is oxidative DNA damage which is primarily removed by the BER pathway. Following the notion that the bulk of neuronal DNA damage is acquired by oxidative DNA damage and ROS, the BER pathway is a likely area of focus for neuronal studies of DNA repair. BER variations in brain aging and pathology in various brain regions and tissues are presented. Therefore, the BER pathway is discussed in greater detail in this review than other repair pathways. Other repair pathways including direct reversal, nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination and non-homologous end joining are also discussed. Finally, there is a growing interest in the role that DNA repair pathways play in the clinical arena as they relate to the neurotoxicity and neuropathy associated with cancer treatments. Among the numerous side effects of cancer treatments, major clinical effects include neurocognitive dysfunction and peripheral neuropathy. These symptoms occur frequently and have not been effectively studied at the cellular or molecular level. Studies of DNA repair may help our understanding of how those cells that are not dividing could succumb to neurotoxicity with the clinical manifestations discussed in the following article.

249 citations


Journal ArticleDOI
TL;DR: New and exciting insights into how gut bacteria modulate the mammalian immune system are emerging, however, much remains to be elucidated about how commensal bacteria influence the function of cells of both the innate and adaptive immune systems in health and disease.
Abstract: The mammalian gastrointestinal tract harbors a complex microbiota consisting of between 500 and 1000 distinct microbial species. Comparative studies based on the germ-free gut have provided clear evidence that the gut microbiota is instrumental in promoting the development of both the gut and systemic immune systems. Early microbial exposure of the gut is thought to dramatically reduce the incidence of inflammatory, autoimmune and atopic diseases further fuelling the scientific viewpoint, that microbial colonization plays an important role in regulating and fine-tuning the immune system throughout life. Recent molecular diversity studies have provided additional evidence that the human gut microbiota is compositionally altered in individuals suffering from inflammatory bowel disorders, suggesting that specific bacterial species are important to maintaining immunological balance and health. New and exciting insights into how gut bacteria modulate the mammalian immune system are emerging. However, much remains to be elucidated about how commensal bacteria influence the function of cells of both the innate and adaptive immune systems in health and disease.

226 citations


Journal ArticleDOI
TL;DR: The evidence for non-targeted radiation-induced bystanderser effects is reviewed with emphasis on prevailing questions in this rapidly developing research field, and the potential significance of bystander effects in evaluating the detrimental health effects of radiation exposure is considered.
Abstract: Radiation-induced bystander effects refer to those responses occurring in cells that were not subject to energy deposition events following ionizing radiation. These bystander cells may have been neighbors of irradiated cells, or physically separated but subject to soluble secreted signals from irradiated cells. Bystander effects have been observed in vitro and in vivo and for various radiation qualities. In tribute to an old friend and colleague, Anthony V. Carrano, who would have said "well what are the critical questions that should be addressed, and so what?", we review the evidence for non-targeted radiation-induced bystander effects with emphasis on prevailing questions in this rapidly developing research field, and the potential significance of bystander effects in evaluating the detrimental health effects of radiation exposure.

219 citations


Journal ArticleDOI
TL;DR: This review provides an update on the mutagenicity of intercalating chemicals, as carried out over the last 17 years, suggesting that DNA intercalation may serve to position other, chemically reactive molecules, in specific ways on the DNA, leading to a distinctive (and wider) range of mutagenic properties, and possible carcinogenic potential.
Abstract: This review provides an update on the mutagenicity of intercalating chemicals, as carried out over the last 17 years. The most extensively studied DNA intercalating agents are acridine and its derivatives, that bind reversibly but non-covalently to DNA. These are frameshift mutagens, especially in bacteria and bacteriophage, but do not otherwise show a wide range of mutagenic properties. Di-acridines or di-quinolines may be either mono- or bis-intercalators, depending upon the length of the alkyl chain separating the chromophores. Those which monointercalate appear as either weak frameshift mutagens in bacteria, or as non-mutagens. However, some of the bisintercalators act as "petite" mutagens in Saccharomyces cerevisiae, suggesting that they may be more likely to target mitochondrial as compared with nuclear DNA. Some of the new methodologies for detecting intercalation suggest this may be a property of a wider range of chemicals than previously recognised. For example, quite a number of flavonoids appear to intercalate into DNA. However, their mutagenic properties may be dominated by the fact that many of them are also able to inhibit topoisomerase II enzymes, and this property implies that they will be potent recombinogens and clastogens. DNA intercalation may serve to position other, chemically reactive molecules, in specific ways on the DNA, leading to a distinctive (and wider) range of mutagenic properties, and possible carcinogenic potential.

Journal ArticleDOI
TL;DR: The role of histone tails and their respective modifications in ATP-dependent remodeling are discussed and the biochemical properties and structural information of several of these remodeling complexes are reviewed.
Abstract: The inter-relationship between DNA repair and ATP dependent chromatin remodeling has begun to become very apparent with recent discoveries. ATP dependent remodeling complexes mobilize nucleosomes along DNA, promote the exchange of histones, or completely displace nucleosomes from DNA. These remodeling complexes are often categorized based on the domain organization of their catalytic subunit. The biochemical properties and structural information of several of these remodeling complexes are reviewed. The different models for how these complexes are able to mobilize nucleosomes and alter nucleosome structure are presented incorporating several recent findings. Finally the role of histone tails and their respective modifications in ATP-dependent remodeling are discussed.

Journal ArticleDOI
TL;DR: Results indicate that a comprehensive assessment of genotoxicity and other test article-induced toxicities can be acquired simultaneously using a simple two-color flow cytometry-based technique.
Abstract: This laboratory has previously reported on the development of a flow cytometry-based method for scoring in vitro micronuclei in mouse lymphoma (L5178Y) cells [S.L. Avlasevich, S.M. Bryce, S.E. Cairns, S.D. Dertinger, In vitro micronucleus scoring by flow cytometry: differential staining of micronuclei versus apoptotic and necrotic chromatin enhances assay reliability, Environ. Molec. Mutagen. 47 (2006) 56-66]. With this method, necrotic and mid/late stage apoptotic cells are labeled with the fluorescent dye ethidium monoazide. Cells are then washed, stripped of their cytoplasmic membranes, and incubated with RNase plus a pan-nucleic acid dye (SYTOX Green). This process provides a suspension of free nuclei and micronuclei that are differentially stained relative to chromatin associated with dead/dying cells. The current report extends this line of investigation to include the human cell line TK6. Additionally, methods are described that facilitate simultaneous quantitative analysis of cytotoxicity, perturbations to the cell cycle, and what we hypothesize is aneuploidization. This comprehensive cytogenetic damage assay was evaluated with the following diverse agents: etoposide, ionizing radiation, methyl methanesulfonate, vinblastine, ethanol, and staurosporine. Cells were harvested after 30h of continuous treatment (in the case of chemicals), or following graded doses of radiation up to 1Gy. Key findings include the following: (1) Significant discrepancies in top dose selection were found for five of the six agents studied when relative survival measurements were based on Coulter counting versus flow cytometry. (2) Both microscopy- and flow cytometry-based scoring methods detected dose-dependent micronucleus formation for the four genotoxic agents studied, whereas no significant increases were observed for the presumed non-genotoxicants ethanol and staurosporine when top dose selection was based on flow cytometric indices of cytotoxicity. (3) SYTOX and ethidium monoazide fluorescence signals conveyed cell cycle and cell death information, respectively, and appear to represent valuable aids for interpreting micronucleus data. (4) The frequency of hypodiploid nuclei increased in response to each of the genotoxic agents studied, but not following exposure to ethanol or staurosporine. Collectively, these results indicate that a comprehensive assessment of genotoxicity and other test article-induced toxicities can be acquired simultaneously using a simple two-color flow cytometry-based technique.

Journal ArticleDOI
TL;DR: It is suggested that micronuclei in binucleate lymphocytes primarily derive from lagging chromosomes and terminal acentric fragments during mitosis, and that nuclear buds and micron nuclei have partly different mechanistic origin.
Abstract: Micronuclei are formed from chromosomes and chromosomal fragments that lag behind in anaphase and are left outside daughter nuclei in telophase. They may also be derived from broken anaphase bridges. Nuclear buds, micronucleus-like bodies attached to the nucleus by a thin nucleoplasmic connection, have been proposed to be generated similarly to micronuclei during nuclear division or in S-phase as a stage in the extrusion of extra DNA, possibly giving rise to micronuclei. To better understand these phenomena, we have characterized the contents of 894 nuclear buds and 1392 micronuclei in normal and folate-deprived 9-day cultures of human lymphocytes using fluorescence in situ hybridization with pancentromeric and pantelomeric DNA probes. Such information has not earlier been available for human primary cells. Surprisingly, there appears to be no previous data on the occurrence of telomeres in micronuclei (or buds) of normal human cells in general. Our results suggest that nuclear buds and micronuclei have partly different mechanistic origin. Interstitial DNA without centromere or telomere label was clearly more prevalent in nuclear buds (43%) than in micronuclei (13%). DNA with only telomere label or with both centromere and telomere label was more frequent in micronuclei (62% and 22%, respectively) than in nuclear buds (44% and 10%, respectively). Folate deprivation especially increased the frequency of nuclear buds and micronuclei harboring telomeric DNA and nuclear buds harboring interstitial DNA but also buds and micronuclei with both centromeric and telomeric DNA. According to the model we propose, that micronuclei in binucleate lymphocytes primarily derive from lagging chromosomes and terminal acentric fragments during mitosis. Most nuclear buds, however, are suggested to originate from interstitial or terminal acentric fragments, possibly representing nuclear membrane entrapment of DNA that has been left in cytoplasm after nuclear division or excess DNA that is being extruded from the nucleus.

Journal ArticleDOI
TL;DR: The observed "side-by-side" binding of small polypyrrole antibiotics has led to the design of synthetic hairpin polyamides with programmable DNA sequence selectivity, able to compete with natural substrates, such as specific transcription factors, and alter gene expression.
Abstract: An understanding of the mechanism by which minor groove binding agents interact with DNA has led to the design of agents that can reversibly bind with high selectivity to extended DNA target sequences. Simple compounds, such as the polypyrroles and the bis-benzimidazoles, have been used as carriers for alkylating agents effectively directing alkylation to specific DNA sequences. The spectrum of DNA alkylation and mutation by classical alkylators, such as nitrogen mustards, has been profoundly modified by such attachment. The observed "side-by-side" binding of small polypyrrole antibiotics has led to the design of synthetic hairpin polyamides with programmable DNA sequence selectivity. These compounds are able to compete with natural substrates, such as specific transcription factors, and alter gene expression. They are being developed as artificial transcription factors, able to deliver activating peptides to specific recognition sequences, and as potential protein-DNA dimerization agents. Hairpin polyamides are also being used as carriers for the delivery of alkylators to defined DNA sites. The degree of control of gene expression thus offered by the hairpin polyamides suggests enormous promise for their clinical utility. Recent developments with other minor groove binding small molecules and technological advances are also discussed.

Journal ArticleDOI
TL;DR: The role of chromatin in nucleotide excision repair (NER) and double-strand break (DSB) repair is focused on and recent data that have identified roles for SWI/SNF-related chromatin remodeling factors in the two repair pathways are discussed.
Abstract: The organization of eukaryotic DNA into chromatin poses a barrier to all processes that require access of enzymes and regulatory factors to their sites of action. While the majority of studies in this area have concentrated on the role of chromatin in the regulation of transcription, there has been a recent emphasis on the relationship of chromatin to DNA damage repair. In this review, we focus on the role of chromatin in nucleotide excision repair (NER) and double-strand break (DSB) repair. NER and DSB repair use very different enzymatic machineries, and these two modes of DNA damage repair are also differentially affected by chromatin. Only a small number of nucleosomes are likely to be involved in NER, while a more extensive region of chromatin is involved in DSB repair. However, a key feature of both NER and DSB repair pathways is the participation of ATP-dependent chromatin remodeling factors at various points in the repair process. We discuss recent data that have identified roles for SWI/SNF-related chromatin remodeling factors in the two repair pathways.

Journal ArticleDOI
TL;DR: This paper reviews reports that link Zn transporter genes, their allelic variants and/or expression profiles in the context of specific diseases and investigates the role of proteins responsible for regulating Zn fluxes in the onset and progression of chronic diseases.
Abstract: The group IIb metal zinc (Zn) is an essential dietary component that can be found in protein rich foods such as meat, seafood and legumes. Thousands of genes encoding Zn binding proteins were identified, especially after the completion of genome projects, an indication that a great number of biological processes are Zn dependent. Imbalance in Zn homeostasis was found to be associated with several chronic diseases such as asthma, diabetes and Alzheimer's disease. As it is now evident for most nutrients, body Zn status results from the interaction between diet and genotype. Zn ions cross biological membranes with the aid of specialized membrane proteins, belonging to the ZRT/IRT-related Proteins (ZIP) and zinc transporters (ZnT) families. The ZIPs are encoded by the Slc39A gene family and are responsible for uptake of the metal, ZnTs are encoded by the Slc30A genes and are involved in intracellular traffic and/or excretion. Both ZnTs and Zips exhibit unique tissue-specific expression, differential responsiveness to dietary Zn deficiency and excess, as well as to physiological stimuli via hormones and cytokines. Intracellular Zn concentration is buffered by metallothioneins (MTs), a class of cytosolic protein with high affinity for metals. Scattered information is available on the role of proteins responsible for regulating Zn fluxes in the onset and progression of chronic diseases. This paper reviews reports that link Zn transporter genes, their allelic variants and/or expression profiles in the context of specific diseases. Further investigation in this direction is very important, since Zn imbalance can result not only from insufficient dietary intake, but also from impaired activity of proteins that regulate Zn metabolism, thus contributing to multifactorial diseases.

Journal ArticleDOI
TL;DR: Findings indicate that miRNA changes occur prior to tumor formation and are not merely a consequence of a transformed state, as previously reported alterations in full-fledged tumors, including hepatocellular carcinomas.
Abstract: Micro RNAs (miRNAs) are small non-coding RNA molecules that function as negative regulators of gene expression. They play a crucial role in the regulation of genes involved in the control of development, cell proliferation, apoptosis, and stress response. Although miRNA levels are substantially altered in tumors, their role in carcinogenesis, specifically at the early pre-cancerous stages, has not been established. Here we report that exposure of Fisher 344 rats to tamoxifen, a potent hepatocarcinogen in rats, for 24 weeks leads to substantial changes in the expression of miRNA genes in the liver. We noted a significant up-regulation of known oncogenic miRNAs, such as the 17-92 cluster, miR-106a, and miR-34. Furthermore, we confirmed the corresponding changes in the expression of proteins targeted by these miRNAs, which include important cell cycle regulators, chromatin modifiers, and expression regulators implicated in carcinogenesis. All these miRNA changes correspond to previously reported alterations in full-fledged tumors, including hepatocellular carcinomas. Thus, our findings indicate that miRNA changes occur prior to tumor formation and are not merely a consequence of a transformed state.

Journal ArticleDOI
TL;DR: The individual components, assembly patterns, and molecular mechanisms of the INO80 class of chromatin remodeling complexes are discussed in this review.
Abstract: ATP-dependent chromatin remodeling complexes contain ATPases of the Swi/Snf superfamily and alter DNA accessibility of chromatin in an ATP-dependent manner. Recently characterized INO80 and SWR1 complexes belong to a subfamily of these chromatin remodelers and are characterized by a split ATPase domain in the core ATPase subunit and the presence of Rvb proteins. INO80 and SWR1 complexes are evolutionarily conserved from yeast to human and have been implicated in transcription regulation, as well as DNA repair. The individual components, assembly patterns, and molecular mechanisms of the INO80 class of chromatin remodeling complexes are discussed in this review.

Journal ArticleDOI
TL;DR: Modifications to histone deacetylation provide restoration of normal chromatin structure in the wake of elongating Pol II and prevent inappropriate initiation within protein-coding regions masked by chromatin.
Abstract: Chromatin structure exerts vital control over gene expression, DNA replication, recombination, and repair. In addition to altering RNA polymerase II's (Pol II) accessibility to DNA, histones are involved in the recruitment of activator and repressor complex(es) to regulate gene expression. Histone deacetylase Rpd3 exists in two distinct forms, Rpd3S and Rpd3L. Several recent studies demonstrated that the Eaf3 chromodomain, an Rpd3S subunit, recognizes Set2-methylated histone H3K36, initiating Rpd3 deacetylase activity in the wake of transcribing Pol II. Eaf3 and Set2 inhibit internal initiation within mRNA coding regions, similar to the transcription elongation factor and histone chaperone, FACT. Recent studies reviewed here demonstrate that histone deacetylation on the body of a transcribed gene is regulated via Set2-mediated methylation of histone H3-K36. These modifications provide restoration of normal chromatin structure in the wake of elongating Pol II and prevent inappropriate initiation within protein-coding regions masked by chromatin.

Journal ArticleDOI
TL;DR: Connections between DNA methylation and histone methylation are discussed, providing examples in which defects in these processes are linked with disease and offering therapeutic possibilities for a wide spectrum of disease.
Abstract: Alterations in epigenetic gene regulation are associated with human disease. Here, we discuss connections between DNA methylation and histone methylation, providing examples in which defects in these processes are linked with disease. Mutations in genes encoding DNA methyltransferases and proteins that bind methylated cytosine residues cause changes in gene expression and alterations in the patterns of DNA methylation. These changes are associated with cancer and congenital diseases due to defects in imprinting. Gene expression is also controlled through histone methylation. Altered levels of methyltransferases that modify lysine 27 of histone H3 (K27H3) and lysine 9 of histone H3 (K9H3) correlate with changes in Rb signaling and disruption of the cell cycle in cancer cells. The K27H3 mark recruits a Polycomb complex involved in regulating stem cell pluripotency, silencing of developmentally regulated genes, and controlling cancer progression. The K9H3 methyl mark recruits HP1, a structural protein that plays a role in heterochromatin formation, gene silencing, and viral latency. Cells exhibiting altered levels of HP1 are predicted to show a loss of silencing at genes regulating cancer progression. Gene silencing through K27H3 and K9H3 can involve histone deacetylation and DNA methylation, suggesting cross talk between epigenetic silencing systems through direct interactions among the various players. The reversible nature of these epigenetic modifications offers therapeutic possibilities for a wide spectrum of disease.

Journal ArticleDOI
TL;DR: It is shown that mutation frequencies and frequencies of mitotic recombination in ES cells are about 100-fold lower than in adult somatic cells or in isogenic mouse embryonic fibroblasts (MEFs); a second complementary protective mechanism eliminates those ES cells that have acquired a mutational burden, thereby maintaining a pristine population.
Abstract: Mutation frequencies at some loci in mammalian somatic cells in vivo approach 10 −4 . The majority of these events occur as a consequence of loss of heterozygosity (LOH) due to mitotic recombination. Such high levels of DNA damage in somatic cells, which can accumulate with age, will cause injury and, after a latency period, may lead to somatic disease and ultimately death. This high level of DNA damage is untenable for germ cells, and by extrapolation for embryonic stem (ES) cells, that must recreate the organism. ES cells cannot tolerate such a high frequency of damage since mutations will immediately impact the altered cell, and subsequently the entire organism. Most importantly, the mutations may be passed on to future generations. ES cells, therefore, must have robust mechanisms to protect the integrity of their genomes. We have examined two such mechanisms. Firstly, we have shown that mutation frequencies and frequencies of mitotic recombination in ES cells are about 100-fold lower than in adult somatic cells or in isogenic mouse embryonic fibroblasts (MEFs). A second complementary protective mechanism eliminates those ES cells that have acquired a mutational burden, thereby maintaining a pristine population. Consistent with this hypothesis, ES cells lack a G1 checkpoint, and the two known signaling pathways that mediate the checkpoint are compromised. The checkpoint kinase, Chk2, which participates in both pathways is sequestered at centrosomes in ES cells and does not phosphorylate its substrates (i.e. p53 and Cdc25A) that must be modified to produce a G1 arrest. Ectopic expression of Chk2 does not rescue the p53-mediated pathway, but does restore the pathway mediated by Cdc25A. Wild type ES cells exposed to ionizing radiation do not accumulate in G1 but do so in S-phase and in G2. ES cells that ectopically express Chk2 undergo cell cycle arrest in G1 as well as G2, and appear to be protected from apoptosis.

Journal ArticleDOI
TL;DR: The interesting finding from this study was the significant negative correlation between thelevel of 8-oxodG adducts and the level of total PAH (bulky) and B[a]P DNA adductS implying that the repair of oxidative DNA damage may be enhanced.
Abstract: This is the authors' final draft of the paper published as Mutation Research 2007, 620(1-2), pp.83-92 and includes the revised Scheme 1 which appeared as a corrigendum in Mutation Research 2007, 625(1-2), pp.177-78. The final published version of the original paper is available on Science Direct, doi:10.1016/j.mrfmmm.2007.02.025.

Journal ArticleDOI
TL;DR: This paper reviews mammalian DNA repair from gametogenesis to preimplantation embryos to late gestational stages and selects studies which investigated gene expression.
Abstract: Mammalian cells have developed complex mechanisms to identify DNA damage and activate the required response to maintain genome integrity Those mechanisms include DNA damage detection, DNA repair, cell cycle arrest and apoptosis which operate together to protect the conceptus from DNA damage originating either in parental gametes or in the embryo's somatic cells DNA repair in the newly fertilized preimplantation embryo is believed to rely entirely on the oocyte's machinery (mRNAs and proteins deposited and stored prior to ovulation) DNA repair genes have been shown to be expressed in the early stages of mammalian development The survival of the embryo necessitates that the oocyte be sufficiently equipped with maternal stored products and that embryonic gene expression commences at the correct time A Medline based literature search was performed using the keywords 'DNA repair' and 'embryo development' or 'gametogenesis' (publication dates between 1995 and 2006) Mammalian studies which investigated gene expression were selected Further articles were acquired from the citations in the articles obtained from the preliminary Medline search This paper reviews mammalian DNA repair from gametogenesis to preimplantation embryos to late gestational stages

Journal ArticleDOI
TL;DR: A combination of human correlation studies with experimental models could provide a rational strategy for optimising nutrigenetic approaches to IBD, and a rare variant in the interleukin-23 receptor (IL23R) gene may actually protect against IBD.
Abstract: Inflammatory bowel disease (IBD) arises in part from a genetic predisposition, through the inheritance of a number of contributory genetic polymorphisms. These variant forms of genes may be associated with an abnormal response to normal luminal bacteria. A consistent observation across most populations is that any of three polymorphisms of the Caspase-activated recruitment domain (CARD15) gene are more prevalent in IBD patients as compared with unaffected controls. Similar aberrant responses to bacteria are associated with variants in Autophagy-related 16-like 1 (ATG16L1) and human defensin (HBD-2, -3 and -4) genes. The defective bacterial signal in turn leads to an excessive immune response, presenting as chronic gut inflammation in susceptible individuals. Inconsistent population reports implicate the major histocompatability complex (MHC), that encodes a number of human leukocyte antigens (HLA), MHC class I chain-related gene A (MICA) or cytokines, such as tumour necrosis factor-alpha (TNF-alpha). Toll-like receptors encoded by the TLR4 or TLR9 genes may also play a role. Recent whole genome scans suggest that a rare variant in the interleukin-23 receptor (IL23R) gene may actually protect against IBD. Other implicated genes may affect mucosal cell polarity (Drosophila discs large homologue 5, DLG5) or mucosal transporter function (sodium dependent organic cation transporters, SLC22A4 and SLC22A5). A variant in ABCB1 (ATP-binding cassette subfamily B member 1) may be especially associated with increased risk of UC. While pharmacogenetics is increasingly being used to predict and optimise clinical response to therapy, nutrigenetics may have even greater potential. In many cases, IBD can be controlled through prescribing an elemental diet, which appears to act through modulating cytokine response and changing the gut microbiota. More generally, no single group of dietary items is beneficial or detrimental to all patients, and elimination diets have been used to individualise dietary requirements. However, recognising the nature of the genes involved may suggest a more strategic approach. Pro- or prebiotics will directly influence the microbial flora, while immunonutrition, including omega-3 fatty acids and certain polyphenols, may reduce the symptoms of gut inflammation. The expression of gut transporters may be modulated through various herbal remedies including green tea polyphenols. Such approaches would require that the gene of interest is functioning normally, other than its expression being up or down-regulated. However, new approaches are being developed to overcome the effects of polymorphisms that affect the function of a gene. A combination of human correlation studies with experimental models could provide a rational strategy for optimising nutrigenetic approaches to IBD.

Journal ArticleDOI
TL;DR: Together, recent studies demonstrate unique attributes of the SAGA coactivator complexes in histone acetylation, methylation, phosphorylation, and deubiquitination.
Abstract: Over the past 10 years, much progress has been made to understand the roles of the similar, yet distinct yeast SAGA and SLIK coactivator complexes involved in histone post-translational modification and gene regulation. Many different groups have elucidated functions of the SAGA complexes including identification of novel components, which have conferred additional distinct functions. Together, recent studies demonstrate unique attributes of the SAGA coactivator complexes in histone acetylation, methylation, phosphorylation, and deubiquitination. In addition to roles in transcriptional activation with the 19S proteasome regulatory particle, recent evidence also suggests functions for SAGA in elongation and mRNA export. The modular nature of SAGA allows this ∼1.8 MDa complex to organize its functions and carry out multiple roles during transcription, particularly under conditions of cellular stress.

Journal ArticleDOI
TL;DR: Novel evidence for a gene-environment interaction between GSTM1 and air pollution (presumably c-PAHs) is provided and it is biologically plausible that increases in %DFI induced by such exposures could impact the risk of male sub/infertility, especially in men who naturally exhibit high levels of%DFI.
Abstract: Previous studies have provided evidence for an association between exposure to high levels of air pollution and increased DNA damage in human sperm. In these studies DNA damage was measured using the sperm chromatin structure assay (SCSA) wherein the percentage of sperm with abnormal chromatin/fragmented DNA is determined and expressed as % DNA fragmentation index (%DFI). Here we extend these observations to address the following hypothesis: men who are homozygous null for glutathione-S-transferase M1 (GSTM1-) are less able to detoxify reactive metabolites of carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) found in air pollution. Consequently they are more susceptible to the effects of air pollution on sperm chromatin. Using a longitudinal study design in which men provided semen samples during periods of both low (baseline) and episodically high air pollution, this study revealed a statistically significant association between GSTM1 null genotype and increased SCSA-defined %DFI (beta=0.309; 95% CI: 0.129, 0.489). Furthermore, GSTM1 null men also showed higher %DFI in response to exposure to intermittent air pollution (beta=0.487; 95% CI: 0.243, 0.731). This study thus provides novel evidence for a gene-environment interaction between GSTM1 and air pollution (presumably c-PAHs). The significance of the findings in this study with respect to fertility status is unknown. However, it is biologically plausible that increases in %DFI induced by such exposures could impact the risk of male sub/infertility, especially in men who naturally exhibit high levels of %DFI.

Journal ArticleDOI
TL;DR: This review summarizes the recent developments in the understanding of histone modifications and their role in the maintenance of genome integrity and regulates many nuclear processes by altering the chromatin structure.
Abstract: The packaging of the eukaryotic genome into highly condensed chromatin makes it inaccessible to the factors required for gene transcription, DNA replication, recombination and repair. Eukaryotes have developed intricate mechanisms to overcome this repressive barrier imposed by chromatin. Histone modifying enzymes and ATP-dependent chromatin remodeling complexes play key roles here as they regulate many nuclear processes by altering the chromatin structure. Significantly, these activities are integral to the process of DNA repair where histone modifications act as signals and landing platforms for various repair proteins. This review summarizes the recent developments in our understanding of histone modifications and their role in the maintenance of genome integrity.

Journal ArticleDOI
TL;DR: Comparison of the influence of acute and chronic ionizing radiation on plant genome stability and global genome expression with existing profiles for several stresses, including UVC and heavy metals, showed substantial transcriptome similarities with the acute but not the chronic transcriptome.
Abstract: We analyzed the influence of acute and chronic ionizing radiation (IR) on plant genome stability and global genome expression. Plants from the "chronic" group were grown for 21 days on (137)Cs-artificially contaminated soil, and received a cumulative dose of 1Gy. The "acute" plant group was exposed to an equal dose of radiation delivered as a single pulse. Analysis of homologous recombination (HR) events revealed a significantly higher increase in HR frequency (HRF) in the "chronic" group as compared to "acute" group. To understand the observed difference we performed global genome expression analysis. RNA profiling at 2h and 24h after acute irradiation showed two-third of up- and down-regulated genes to be similarly regulated at both time points. In contrast, less than 10% of the genes up- or down-regulated at 2h or 24h post-acute irradiation were similarly changed after chronic exposure. Promoter analysis revealed substantial differences in the specific regulatory elements found in acute and chronic transcriptomes. Further comparison of the data with existing profiles for several stresses, including UVC and heavy metals, showed substantial transcriptome similarities with the acute but not the chronic transcriptome. Plants exposed to chronic but not acute radiation showed early flowering; transcriptome analysis also revealed induction of flowering genes in "chronic" group.

Journal ArticleDOI
TL;DR: The evidence for DNA damage in Atherosclerosis, the likely stimuli inducing damage, and the increasing role of p53 in mediating apoptosis and its consequences in atherosclerosis are summarized.
Abstract: Atherosclerosis is the commonest cause of death in the Western world. The atherosclerotic plaque shows evidence of DNA damage, activation of damage repair pathways, p53 expression and apoptosis, involving a variety of different cell types. This review summarises the evidence for DNA damage in atherosclerosis, the likely stimuli inducing damage, and the increasing role of p53 in mediating apoptosis and its consequences in atherosclerosis.