scispace - formally typeset
Search or ask a question

Showing papers in "Philosophical Transactions of the Royal Society B in 2017"


Journal ArticleDOI
TL;DR: Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales, which makes it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities.
Abstract: Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decade...

420 citations


Journal ArticleDOI
TL;DR: Stable EBV infection and the expression of latent EBV genes are postulated to drive the transformation of pre-invasive nasopharyngeal epithelial cells to cancer cells through multiple pathways.
Abstract: Epstein-Barr virus (EBV) is associated with multiple types of human cancer, including lymphoid and epithelial cancers. The closest association with EBV infection is seen in undifferentiated nasopharyngeal carcinoma (NPC), which is endemic in the southern Chinese population. A strong association between NPC risk and the HLA locus at chromosome 6p has been identified, indicating a link between the presentation of EBV antigens to host immune cells and NPC risk. EBV infection in NPC is clonal in origin, strongly suggesting that NPC develops from the clonal expansion of a single EBV-infected cell. In epithelial cells, the default program of EBV infection is lytic replication. However, latent infection is the predominant mode of EBV infection in NPC. The establishment of latent EBV infection in pre-invasive nasopharyngeal epithelium is believed to be an early stage of NPC pathogenesis. Recent genomic study of NPC has identified multiple somatic mutations in the upstream negative regulators of NF-κB signalling. Dysregulated NF-κB signalling may contribute to the establishment of latent EBV infection in NPC. Stable EBV infection and the expression of latent EBV genes are postulated to drive the transformation of pre-invasive nasopharyngeal epithelial cells to cancer cells through multiple pathways.This article is part of the themed issue 'Human oncogenic viruses'.

344 citations


Journal ArticleDOI
TL;DR: It is considered that holistic, One Health approaches to the management and mitigation of the risks of emerging infectious diseases have the greatest chance of success.
Abstract: Infectious diseases affect people, domestic animals and wildlife alike, with many pathogens being able to infect multiple species Fifty years ago, following the wide-scale manufacture and use of antibiotics and vaccines, it seemed that the battle against infections was being won for the human population Since then, however, and in addition to increasing antimicrobial resistance among bacterial pathogens, there has been an increase in the emergence of, mostly viral, zoonotic diseases from wildlife, sometimes causing fatal outbreaks of epidemic proportions Concurrently, infectious disease has been identified as an increasing threat to wildlife conservation A synthesis published in 2000 showed common anthropogenic drivers of disease threats to biodiversity and human health, including encroachment and destruction of wildlife habitat and the human-assisted spread of pathogens Almost two decades later, the situation has not changed and, despite improved knowledge of the underlying causes, little has been done at the policy level to address these threats For the sake of public health and wellbeing, human-kind needs to work better to conserve nature and preserve the ecosystem services, including disease regulation, that biodiversity provides while also understanding and mitigating activities which lead to disease emergence We consider that holistic, One Health approaches to the management and mitigation of the risks of emerging infectious diseases have the greatest chance of successThis article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'

327 citations


Journal ArticleDOI
TL;DR: The factors that led to rapid and extensive propagation are summarized, as well as the key successes, failures and lessons learned from this outbreak and the response are highlighted.
Abstract: Ebola virus causes a severe haemorrhagic fever in humans with high case fatality and significant epidemic potential. The 2013-2016 outbreak in West Africa was unprecedented in scale, being larger than all previous outbreaks combined, with 28 646 reported cases and 11 323 reported deaths. It was also unique in its geographical distribution and multicountry spread. It is vital that the lessons learned from the world's largest Ebola outbreak are not lost. This article aims to provide a detailed description of the evolution of the outbreak. We contextualize this outbreak in relation to previous Ebola outbreaks and outline the theories regarding its origins and emergence. The outbreak is described by country, in chronological order, including epidemiological parameters and implementation of outbreak containment strategies. We then summarize the factors that led to rapid and extensive propagation, as well as highlight the key successes, failures and lessons learned from this outbreak and the response.This article is part of the themed issue 'The 2013-2016 West African Ebola epidemic: data, decision-making and disease control'.

323 citations


Journal ArticleDOI
TL;DR: This article exposed a neural network model that instantiates known properties of hippocampal projections and subfields to sequences of items with temporal regularities and found that the monosynaptic pathway—the pathway connecting entorhinal cortex directly to region CA1—was able to support statistical learning, while the trisynaptic pathways learned individual episodes.
Abstract: A growing literature suggests that the hippocampus is critical for the rapid extraction of regularities from the environment. Although this fits with the known role of the hippocampus in rapid lear...

314 citations


Journal ArticleDOI
TL;DR: A model detailing the neural mechanisms involved in freezing and the shift to fight-or-flight action is presented, which concludes with a research agenda to stimulate translational animal–human research in this emerging field of human defensive stress responses.
Abstract: Upon increasing levels of threat, animals activate qualitatively different defensive modes, including freezing and active fight-or-flight reactions. Whereas freezing is a form of behavioural inhibition accompanied by parasympathetically dominated heart rate deceleration, fight-or-flight reactions are associated with sympathetically driven heart rate acceleration. Despite the potential relevance of freezing for human stress-coping, its phenomenology and neurobiological underpinnings remain largely unexplored in humans. Studies in rodents have shown that freezing depends on amygdala projections to the brainstem (periaqueductal grey). Recent neuroimaging studies in humans have indicated that similar brain regions may be involved in human freezing. In addition, flexibly shifting between freezing and active defensive modes is critical for adequate stress-coping and relies on fronto-amygdala connections. This review paper presents a model detailing these neural mechanisms involved in freezing and the shift to fight-or-flight action. Freezing is not a passive state but rather a parasympathetic brake on the motor system, relevant to perception and action preparation. Study of these defensive responses in humans may advance insights into human stress-related psychopathologies characterized by rigidity in behavioural stress reactions. The paper therefore concludes with a research agenda to stimulate translational animal-human research in this emerging field of human defensive stress responses.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'.

312 citations


Journal ArticleDOI
TL;DR: Recent developments in the understanding of EBV-associated lymphomagenesis in both the immunocompetent and Immunocompromised host are reviewed.
Abstract: Epstein–Barr virus (EBV), originally discovered through its association with Burkitt lymphoma, is now aetiologically linked to a remarkably wide range of lymphoproliferative lesions and malignant lymphomas of B-, T- and NK-cell origin. Some occur as rare accidents of virus persistence in the B lymphoid system, while others arise as a result of viral entry into unnatural target cells. The early finding that EBV is a potent B-cell growth transforming agent hinted at a simple oncogenic mechanism by which this virus could promote lymphomagenesis. In reality, the pathogenesis of EBV-associated lymphomas involves a complex interplay between different patterns of viral gene expression and cellular genetic changes. Here we review recent developments in our understanding of EBV-associated lymphomagenesis in both the immunocompetent and immunocompromised host. This article is part of the themed issue ‘Human oncogenic viruses’.

301 citations


Journal ArticleDOI
TL;DR: Various formulations of vertex models that have been proposed for describing tissues in two and three dimensions are reviewed, a generic formulation using a virtual work differential is discussed, and applications of vertices to biological morphogenetic processes are reviewed.
Abstract: Tissue morphogenesis requires the collective, coordinated motion and deformation of a large number of cells. Vertex model simulations for tissue mechanics have been developed to bridge the scales between force generation at the cellular level and tissue deformation and flows. We review here various formulations of vertex models that have been proposed for describing tissues in two and three dimensions. We discuss a generic formulation using a virtual work differential, and we review applications of vertex models to biological morphogenetic processes. We also highlight recent efforts to obtain continuum theories of tissue mechanics, which are effective, coarse-grained descriptions of vertex models.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'.

283 citations


Journal ArticleDOI
TL;DR: The patterns of, and processes governing recombination in eukaryotes are explored, and how variation in rate and distribution relates to genome architecture, genetic and epigenetic mechanisms, sex, environmental perturbations and variable selective pressures is discussed.
Abstract: Recombination, the exchange of DNA between maternal and paternal chromosomes during meiosis, is an essential feature of sexual reproduction in nearly all multicellular organisms. While the role of recombination in the evolution of sex has received theoretical and empirical attention, less is known about how recombination rate itself evolves and what influence this has on evolutionary processes within sexually reproducing organisms. Here, we explore the patterns of, and processes governing recombination in eukaryotes. We summarize patterns of variation, integrating current knowledge with an analysis of linkage map data in 353 organisms. We then discuss proximate and ultimate processes governing recombination rate variation and consider how these influence evolutionary processes. Genome-wide recombination rates (cM/Mb) can vary more than tenfold across eukaryotes, and there is large variation in the distribution of recombination events across closely related taxa, populations and individuals. We discuss how variation in rate and distribution relates to genome architecture, genetic and epigenetic mechanisms, sex, environmental perturbations and variable selective pressures. There has been great progress in determining the molecular mechanisms governing recombination, and with the continued development of new modelling and empirical approaches, there is now also great opportunity to further our understanding of how and why recombination rate varies. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’.

278 citations


Journal ArticleDOI
TL;DR: Empirical evidence suggests that populations and species from more variable environments show higher levels of plasticity that might preadapt them to extremes, but genetic variance for plastic responses can also be low, and genetic variation may not be expressed for some classes of traits under extreme conditions.
Abstract: Phenotypic plasticity, if adaptive, may allow species to counter the detrimental effects of extreme conditions, but the infrequent occurrence of extreme environments and/or their restriction to low-quality habitats within a species range means that they exert little direct selection on reaction norms. Plasticity could, therefore, be maladaptive under extreme environments, unless genetic correlations are strong between extreme and non-extreme environmental states, and the optimum phenotype changes smoothly with the environment. Empirical evidence suggests that populations and species from more variable environments show higher levels of plasticity that might preadapt them to extremes, but genetic variance for plastic responses can also be low, and genetic variation may not be expressed for some classes of traits under extreme conditions. Much of the empirical literature on plastic responses to extremes has not yet been linked to ecologically relevant conditions, such as asymmetrical fluctuations in the case of temperature extremes. Nevertheless, evolved plastic responses are likely to be important for natural and agricultural species increasingly exposed to climate extremes, and there is an urgent need to collect empirical information and link this to model predictions.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.

257 citations


Journal ArticleDOI
TL;DR: The role of hepatitis B and C viral infections in HCC development is essential for the future design of treatments and therapies for this cancer and direct and indirect risk factors are highlighted.
Abstract: Hepatitis B and C viruses are a global health problem causing acute and chronic infections that can lead to liver cirrhosis and hepatocellular carcinoma (HCC). These infections are the leading caus...

Journal ArticleDOI
TL;DR: Some of the recent progress in the field of Hebbian and homeostatic plasticity is described, as well as some of the deep puzzles that remain.
Abstract: It has become widely accepted that homeostatic and Hebbian plasticity mechanisms work hand in glove to refine neural circuit function. Nonetheless, our understanding of how these fundamentally dist...

Journal ArticleDOI
TL;DR: In a recent special issue as discussed by the authors, the authors investigated the human-induced contemporary evolution in a number of "contexts", including hunting, harvesting, fishing, agriculture, medicine, climate change, pollution, eutrophication, urbanization, habitat fragmentation, biological invasions and emerging/disappearing diseases.
Abstract: Humans have dramatic, diverse and far-reaching influences on the evolution of other organisms. Numerous examples of this human-induced contemporary evolution have been reported in a number of 'contexts', including hunting, harvesting, fishing, agriculture, medicine, climate change, pollution, eutrophication, urbanization, habitat fragmentation, biological invasions and emerging/disappearing diseases. Although numerous papers, journal special issues and books have addressed each of these contexts individually, the time has come to consider them together and thereby seek important similarities and differences. The goal of this special issue, and this introductory paper, is to promote and expand this nascent integration. We first develop predictions as to which human contexts might cause the strongest and most consistent directional selection, the greatest changes in evolutionary potential, the greatest genetic (as opposed to plastic) changes and the greatest effects on evolutionary diversification We then develop predictions as to the contexts where human-induced evolutionary changes might have the strongest effects on the population dynamics of the focal evolving species, the structure of their communities, the functions of their ecosystems and the benefits and costs for human societies. These qualitative predictions are intended as a rallying point for broader and more detailed future discussions of how human influences shape evolution, and how that evolution then influences species traits, biodiversity, ecosystems and humans.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.

Journal ArticleDOI
TL;DR: It is hypothesized that TE insertion polymorphism may be important in driving within-species variation in recombination rates in surrounding genomic regions, and the interaction between TEs and recombination may create positive feedback, whereby TE accumulation in non-recombining regions contributes to the spread of recombination suppression.
Abstract: One of the most striking patterns of genome structure is the tight, typically negative, association between transposable elements (TEs) and meiotic recombination rates. While this is a highly recurring feature of eukaryotic genomes, the mechanisms driving correlations between TEs and recombination remain poorly understood, and distinguishing cause versus effect is challenging. Here, we review the evidence for a relation between TEs and recombination, and discuss the underlying evolutionary forces. Evidence to date suggests that overall TE densities correlate negatively with recombination, but the strength of this correlation varies across element types, and the pattern can be reversed. Results suggest that heterogeneity in the strength of selection against ectopic recombination and gene disruption can drive TE accumulation in regions of low recombination, but there is also strong evidence that the regulation of TEs can influence local recombination rates. We hypothesize that TE insertion polymorphism may be important in driving within-species variation in recombination rates in surrounding genomic regions. Furthermore, the interaction between TEs and recombination may create positive feedback, whereby TE accumulation in non-recombining regions contributes to the spread of recombination suppression. Further investigation of the coevolution between recombination and TEs has important implications for our understanding of the evolution of recombination rates and genome structure. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’.

Journal ArticleDOI
TL;DR: Potential directions of research that are most promising to develop an understanding of how these two forms of plasticity interact to facilitate functional changes in the brain are suggested.
Abstract: We summarize here the results presented and subsequent discussion from the meeting on Integrating Hebbian and Homeostatic Plasticity at the Royal Society in April 2016. We first outline the major themes and results presented at the meeting. We next provide a synopsis of the outstanding questions that emerged from the discussion at the end of the meeting and finally suggest potential directions of research that we believe are most promising to develop an understanding of how these two forms of plasticity interact to facilitate functional changes in the brain.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.

Journal ArticleDOI
TL;DR: It is argued that the hypotheses are best interpreted in terms of a framework of evolutionary causes, consequences, consequences and constraints (usually physiological limitations requiring resolution if large brains are to evolve) that require novel social behaviours for their resolution.
Abstract: The question as to why primates have evolved unusually large brains has received much attention, with many alternative proposals all supported by evidence. We review the main hypotheses, the assumptions they make and the evidence for and against them. Taking as our starting point the fact that every hypothesis has sound empirical evidence to support it, we argue that the hypotheses are best interpreted in terms of a framework of evolutionary causes (selection factors), consequences (evolutionary windows of opportunity) and constraints (usually physiological limitations requiring resolution if large brains are to evolve). Explanations for brain evolution in birds and mammals generally, and primates in particular, have to be seen against the backdrop of the challenges involved with the evolution of coordinated, cohesive, bonded social groups that require novel social behaviours for their resolution, together with the specialized cognition and neural substrates that underpin this. A crucial, but frequently overlooked, issue is that fact that the evolution of large brains required energetic, physiological and time budget constraints to be overcome. In some cases, this was reflected in the evolution of 'smart foraging' and technical intelligence, but in many cases required the evolution of behavioural competences (such as coalition formation) that required novel cognitive skills. These may all have been supported by a domain-general form of cognition that can be used in many different contexts.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.

Journal ArticleDOI
TL;DR: To increase leaf photosynthesis in wheat, the level of the Calvin–Benson cycle enzyme sedoheptulose-1,7-biphosphatase (SBPase) has been increased through transformation and expression of a Brachypodium distachyon SBPase gene construct.
Abstract: To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf photosynthesis in wheat, the level of the Calvin–Benson cycle enzyme sedoheptulose-1,7-biphosphatase (SBPase) has been increased through transformation and expression of a Brachypodium distachyon SBPase gene construct. Transgenic lines with increased SBPase protein levels and activity were grown under greenhouse conditions and showed enhanced leaf photosynthesis and increased total biomass and dry seed yield. This showed the potential of improving yield potential by increasing leaf photosynthesis in a crop species such as wheat. The results are discussed with regard to future strategies for further improvement of photosynthesis in wheat.

Journal ArticleDOI
TL;DR: Key areas of uncertainty include the precise influence of deer abundance on tick abundance, how tick populations are regulated, assembly of host communities and tick-feeding patterns across different habitats, reservoir competence of host species, and pathogenicity for humans of different genotypes of Borrelia burgdorferi.
Abstract: Lyme disease is the most common tick-borne disease in temperate regions of North America, Europe and Asia, and the number of reported cases has increased in many regions as landscapes have been altered. Although there has been extensive work on the ecology and epidemiology of this disease in both Europe and North America, substantial uncertainty exists about fundamental aspects that determine spatial and temporal variation in both disease risk and human incidence, which hamper effective and efficient prevention and control. Here we describe areas of consensus that can be built on, identify areas of uncertainty and outline research needed to fill these gaps to facilitate predictive models of disease risk and the development of novel disease control strategies. Key areas of uncertainty include: (i) the precise influence of deer abundance on tick abundance, (ii) how tick populations are regulated, (iii) assembly of host communities and tick-feeding patterns across different habitats, (iv) reservoir competence of host species, and (v) pathogenicity for humans of different genotypes of Borrelia burgdorferi . Filling these knowledge gaps will improve Lyme disease prevention and control and provide general insights into the drivers and dynamics of this emblematic multi-host–vector-borne zoonotic disease. This article is part of the themed issue ‘Conservation, biodiversity and infectious disease: scientific evidence and policy implications'.

Journal ArticleDOI
TL;DR: Evidence regarding potential effects of ‘system changes’ on parasite transmission from wild host–parasite systems is highlighted and synthesized to support robust predictions of altered parasite dynamics in a rapidly changing world.
Abstract: Parasitic infections are ubiquitous in wildlife, livestock and human populations, and healthy ecosystems are often parasite rich. Yet, their negative impacts can be extreme. Understanding how both anticipated and cryptic changes in a system might affect parasite transmission at an individual, local and global level, is critical for sustainable control in humans and livestock. Here we highlight and synthesise evidence regarding potential effects of ‘system changes’ (both climatic and anthropogenic) on parasite transmission from wild host-parasite systems. Such information could inform more efficient and sustainable parasite control programmes in domestic animals or humans. Many examples from diverse terrestrial and aquatic natural systems show how abiotic and biotic factors affected by system changes can interact additively, multiplicatively or antagonistically to influence parasite transmission, including through altered habitat structure, biodiversity, host demographics and evolution. Despite this, few studies of managed systems explicitly consider these higher-order interactions, or the subsequent effects of parasite evolution, which can conceal or exaggerate measured impacts of control actions. We call for a more integrated approach to investigating transmission dynamics, which recognizes these complexities and makes use of new technologies for data capture and monitoring, and to support robust predictions of altered parasite dynamics in a rapidly changing world.

Journal ArticleDOI
TL;DR: It is suggested that this problem can be resolved by questioning the utility of the classical low- to high-level framework of visual perception for scene processing, and why low- and mid-level properties may be particularly diagnostic for the behavioural goals specific to scene perception as compared to object recognition.
Abstract: Visual scene analysis in humans has been characterized by the presence of regions in extrastriate cortex that are selectively responsive to scenes compared with objects or faces. While these regions have often been interpreted as representing high-level properties of scenes (e.g. category), they also exhibit substantial sensitivity to low-level (e.g. spatial frequency) and mid-level (e.g. spatial layout) properties, and it is unclear how these disparate findings can be united in a single framework. In this opinion piece, we suggest that this problem can be resolved by questioning the utility of the classical low- to high-level framework of visual perception for scene processing, and discuss why low- and mid-level properties may be particularly diagnostic for the behavioural goals specific to scene perception as compared to object recognition. In particular, we highlight the contributions of low-level vision to scene representation by reviewing (i) retinotopic biases and receptive field properties of scene-selective regions and (ii) the temporal dynamics of scene perception that demonstrate overlap of low- and mid-level feature representations with those of scene category. We discuss the relevance of these findings for scene perception and suggest a more expansive framework for visual scene analysis.This article is part of the themed issue 'Auditory and visual scene analysis'.

Journal ArticleDOI
TL;DR: Evidence on mechanisms linking urban development patterns to rapid phenotypesic changes is reviewed, and phenotypic changes for which there is evidence of micro-evolution versus phenotyping changes which may represent plasticity are differentiated.
Abstract: Emerging evidence that cities drive micro-evolution raises the question of whether rapid urbanization of Earth might impact ecosystems by causing systemic changes in functional traits that regulate urban ecosystems' productivity and stability. Intraspecific trait variation-variation in organisms' morphological, physiological or behavioural characteristics stemming from genetic variability and phenotypic plasticity-has significant implications for ecological functions such as nutrient cycling and primary productivity. While it is well established that changes in ecological conditions can drive evolutionary change in species' traits that, in turn, can alter ecosystem function, an understanding of the reciprocal and simultaneous processes associated with such interactions is only beginning to emerge. In urban settings, the potential for rapid trait change may be exacerbated by multiple selection pressures operating simultaneously. This paper reviews evidence on mechanisms linking urban development patterns to rapid phenotypic changes, and differentiates phenotypic changes for which there is evidence of micro-evolution versus phenotypic changes which may represent plasticity. Studying how humans mediate phenotypic trait changes through urbanization could shed light on fundamental concepts in ecological and evolutionary theory. It can also contribute to our understanding of eco-evolutionary feedback and provide insights for maintaining ecosystem function over the long term.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.

Journal ArticleDOI
TL;DR: It is suggested that learning and memory rely on an intricate interplay of diverse plasticity mechanisms on different timescales which jointly ensure stability and plasticity of neural circuits.
Abstract: We review a body of theoretical and experimental research on Hebbian and homeostatic plasticity, starting from a puzzling observation: while homeostasis of synapses found in experiments is a slow c...

Journal ArticleDOI
TL;DR: Flag leaves of wheat are the major photosynthetic organs supplying the grain of wheat, and will be intermittently shaded throughout a typical day, and the speed of adjustment to a shade to sun transition in these leaves was analysed.
Abstract: Wheat is the second most important direct source of food calories in the world. After considerable improvement during the Green Revolution, increase in genetic yield potential appears to have stalled. Improvement of photosynthetic efficiency now appears a major opportunity in addressing the sustainable yield increases needed to meet future food demand. Effort, however, has focused on increasing efficiency under steady-state conditions. In the field, the light environment at the level of individual leaves is constantly changing. The speed of adjustment of photosynthetic efficiency can have a profound effect on crop carbon gain and yield. Flag leaves of wheat are the major photosynthetic organs supplying the grain of wheat, and will be intermittently shaded throughout a typical day. Here, the speed of adjustment to a shade to sun transition in these leaves was analysed. On transfer to sun conditions, the leaf required about 15 min to regain maximum photosynthetic efficiency. In vivo analysis based on the responses of leaf CO2 assimilation (A) to intercellular CO2 concentration (ci) implied that the major limitation throughout this induction was activation of the primary carboxylase of C3 photosynthesis, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This was followed in importance by stomata, which accounted for about 20% of the limitation. Except during the first few seconds, photosynthetic electron transport and regeneration of the CO2 acceptor molecule, ribulose-1,5-bisphosphate (RubP), did not affect the speed of induction. The measured kinetics of Rubisco activation in the sun and de-activation in the shade were predicted from the measurements. These were combined with a canopy ray tracing model that predicted intermittent shading of flag leaves over the course of a June day. This indicated that the slow adjustment in shade to sun transitions could cost 21% of potential assimilation.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.

Journal ArticleDOI
TL;DR: The existing anatomical and functional evidence of local interactions between astrocytes and synapses is reviewed, and how it underlies a role for astroCytes in the computation of synaptic information is reviewed.
Abstract: Astrocytes intimately interact with synapses, both morphologically and, as evidenced in the past 20 years, at the functional level. Ultrathin astrocytic processes contact and sometimes enwrap the synaptic elements, sense synaptic transmission and shape or alter the synaptic signal by releasing signalling molecules. Yet, the consequences of such interactions in terms of information processing in the brain remain very elusive. This is largely due to two major constraints: (i) the exquisitely complex, dynamic and ultrathin nature of distal astrocytic processes that renders their investigation highly challenging and (ii) our lack of understanding of how information is encoded by local and global fluctuations of intracellular calcium concentrations in astrocytes. Here, we will review the existing anatomical and functional evidence of local interactions between astrocytes and synapses, and how it underlies a role for astrocytes in the computation of synaptic information.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.

Journal ArticleDOI
TL;DR: Several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press).
Abstract: Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.

Journal ArticleDOI
TL;DR: A new solution to the unsolved problem of how infants break into word learning based on the visual statistics of everyday infant-perspective scenes is offered based on images from head camera video captured by 8 1/2 to 10 1-2 month-old infants.
Abstract: We offer a new solution to the unsolved problem of how infants break into word learning based on the visual statistics of everyday infant-perspective scenes. Images from head camera video captured ...

Journal ArticleDOI
TL;DR: Ocular fixation is a dynamic process that is actively controlled by many of the same brain structures involved in the control of eye movements, including the superior colliculus, cerebellum and reticular formation.
Abstract: Ocular fixation is a dynamic process that is actively controlled by many of the same brain structures involved in the control of eye movements, including the superior colliculus, cerebellum and ret...

Journal ArticleDOI
TL;DR: The ecological conditions that favour the spread of traits by HGT, the evolutionary and social consequences of sharing traits, and how HGT is shaped by inherent conflicts between bacteria and MGEs are discussed.
Abstract: In biological systems, evolutionary innovations can spread not only from parent to offspring (i.e. vertical transmission), but also ‘horizontally’ between individuals, who may or may not be related...

Journal ArticleDOI
TL;DR: The role of alternative splicing as a source of transcript diversification has previously been compared to that of gene duplication, with the relationship between the two extensively explored as mentioned in this paper, and it is known that genes with developmental functions are enriched for alternative splice events.
Abstract: Alternative splicing, a mechanism of post-transcriptional RNA processing whereby a single gene can encode multiple distinct transcripts, has been proposed to underlie morphological innovations in multicellular organisms. Genes with developmental functions are enriched for alternative splicing events, suggestive of a contribution of alternative splicing to developmental programmes. The role of alternative splicing as a source of transcript diversification has previously been compared to that of gene duplication, with the relationship between the two extensively explored. Alternative splicing is reduced following gene duplication with the retention of duplicate copies higher for genes which were alternatively spliced prior to duplication. Furthermore, and unlike the case for overall gene number, the proportion of alternatively spliced genes has also increased in line with the evolutionary diversification of cell types, suggesting alternative splicing may contribute to the complexity of developmental programmes. Together these observations suggest a prominent role for alternative splicing as a source of functional innovation. However, it is unknown whether the proliferation of alternative splicing events indeed reflects a functional expansion of the transcriptome or instead results from weaker selection acting on larger species, which tend to have a higher number of cell types and lower population sizes.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.

Journal ArticleDOI
TL;DR: Recent super-resolution studies indicate that glutamatergic synapses are modular (module size 70–80 nm), as predicted by theoretical work, and modules function as quasi-independent loci of AMPA-mediated transmission and may be independently modifiable, suggesting a new understanding of quantal transmission.
Abstract: Synapses are complex because they perform multiple functions, including at least six mechanistically different forms of plasticity. Here, I comment on recent developments regarding these processes. (i) Short-term potentiation (STP), a Hebbian process that requires small amounts of synaptic input, appears to make strong contributions to some forms of working memory. (ii) The rules for long-term potentiation (LTP) induction in CA3 have been clarified: induction does not depend obligatorily on backpropagating sodium spikes but, rather, on dendritic branch-specific N-methyl-d-aspartate (NMDA) spikes. (iii) Late LTP, a process that requires a dopamine signal (and is therefore neoHebbian), is mediated by trans-synaptic growth of the synapse, a growth that occurs about an hour after LTP induction. (iv) LTD processes are complex and include both homosynaptic and heterosynaptic forms. (v) Synaptic scaling produced by changes in activity levels are not primarily cell-autonomous, but rather depend on network activity. (vi) The evidence for distance-dependent scaling along the primary dendrite is firm, and a plausible structural-based mechanism is suggested.Ideas about the mechanisms of synaptic function need to take into consideration newly emerging data about synaptic structure. Recent super-resolution studies indicate that glutamatergic synapses are modular (module size 70-80 nm), as predicted by theoretical work. Modules are trans-synaptic structures and have high concentrations of postsynaptic density-95 (PSD-95) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. These modules function as quasi-independent loci of AMPA-mediated transmission and may be independently modifiable, suggesting a new understanding of quantal transmission.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity.'