scispace - formally typeset
Search or ask a question

Showing papers in "Renewable & Sustainable Energy Reviews in 2014"


Journal ArticleDOI
TL;DR: In this paper, various aspects of CCS are reviewed and discussed including the state of the art technologies for CO2 capture, separation, transport, storage, leakage, monitoring, and life cycle analysis.
Abstract: Global warming and climate change concerns have triggered global efforts to reduce the concentration of atmospheric carbon dioxide (CO2). Carbon dioxide capture and storage (CCS) is considered a crucial strategy for meeting CO2 emission reduction targets. In this paper, various aspects of CCS are reviewed and discussed including the state of the art technologies for CO2 capture, separation, transport, storage, leakage, monitoring, and life cycle analysis. The selection of specific CO2 capture technology heavily depends on the type of CO2 generating plant and fuel used. Among those CO2 separation processes, absorption is the most mature and commonly adopted due to its higher efficiency and lower cost. Pipeline is considered to be the most viable solution for large volume of CO2 transport. Among those geological formations for CO2 storage, enhanced oil recovery is mature and has been practiced for many years but its economical viability for anthropogenic sources needs to be demonstrated. There are growing interests in CO2 storage in saline aquifers due to their enormous potential storage capacity and several projects are in the pipeline for demonstration of its viability. There are multiple hurdles to CCS deployment including the absence of a clear business case for CCS investment and the absence of robust economic incentives to support the additional high capital and operating costs of the whole CCS process.

2,181 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present how renewable energy resources are currently being used, scientific developments to improve their use, their future prospects, and their deployment, and represent the impact of power electronics and smart grid technologies that can enable the proportionate share of renewable resources.
Abstract: Electric energy security is essential, yet the high cost and limited sources of fossil fuels, in addition to the need to reduce greenhouse gasses emission, have made renewable resources attractive in world energy-based economies. The potential for renewable energy resources is enormous because they can, in principle, exponentially exceed the world׳s energy demand; therefore, these types of resources will have a significant share in the future global energy portfolio, much of which is now concentrating on advancing their pool of renewable energy resources. Accordingly, this paper presents how renewable energy resources are currently being used, scientific developments to improve their use, their future prospects, and their deployment. Additionally, the paper represents the impact of power electronics and smart grid technologies that can enable the proportionate share of renewable energy resources.

1,990 citations


Journal ArticleDOI
TL;DR: In this article, a survey of demand response potentials and benefits in smart grids is presented, with reference to real industrial case studies and research projects, such as smart meters, energy controllers, communication systems, etc.
Abstract: The smart grid is conceived of as an electric grid that can deliver electricity in a controlled, smart way from points of generation to active consumers. Demand response (DR), by promoting the interaction and responsiveness of the customers, may offer a broad range of potential benefits on system operation and expansion and on market efficiency. Moreover, by improving the reliability of the power system and, in the long term, lowering peak demand, DR reduces overall plant and capital cost investments and postpones the need for network upgrades. In this paper a survey of DR potentials and benefits in smart grids is presented. Innovative enabling technologies and systems, such as smart meters, energy controllers, communication systems, decisive to facilitate the coordination of efficiency and DR in a smart grid, are described and discussed with reference to real industrial case studies and research projects.

1,901 citations


Journal ArticleDOI
TL;DR: A comprehensive review of fuel cell science and engineering with a focus on hydrogen fuel cells is provided in this article, where the most current data from industry and academia have been used with the relation between fuel cell fundamentals and applications highlighted throughout the manuscript.
Abstract: This paper provides a comprehensive review of fuel cell science and engineering with a focus on hydrogen fuel cells. The paper provides a concise, up-to-date review of fuel cell fundamentals; history; competing technologies; types; advantages and challenges; portable, stationary, and transportation applications and markets; current status of research-and-development; future targets; design levels; thermodynamic and electrochemical principles; system evaluation factors; and prospects and outlook. The most current data from industry and academia have been used with the relation between fuel cell fundamentals and applications highlighted throughout the manuscript.

1,238 citations


Journal ArticleDOI
TL;DR: In this article, the main steps of pyrolysis and the composition of the products obtained from each constituent were synthesized and the results were used to predict the reactivity and energy content of these products and evaluate their potential use as biofuels in renewable applications.
Abstract: The conversion of biomass by thermochemical means is very promising for the substitution of fossil materials in many energy applications. Given the complexity of biomass the main challenge in its use is to obtain products with high yield and purity. For a better understanding of biomass thermochemical conversion, many authors have studied in TG analyzer or at bed scale the individual pyrolysis of its main constituents (i.e. cellulose, hemicelluloses and lignin). Based on these studies, this original work synthesizes the main steps of conversion and the composition of the products obtained from each constituent. Pyrolysis conversion can be described as the superposition of three main pathways (char formation, depolymerization and fragmentation) and secondary reactions. Lignin, which is composed of many benzene rings, gives the highest char yield and its depolymerization leads to various phenols. The depolymerization of the polysaccharides is a source of anhydro-saccharides and furan compounds. The fragmentation of the different constituents and the secondary reactions produce CO, CO2 and small chain compounds. For temperature higher than 500 °C, the residues obtained from the different constituents present a similar structure, which evolves towards a more condensed polyaromatic form by releasing CH4, CO and H2. As the aromatic rings and their substituent composition have a critical influence on the reactivity of pyrolysis products, a particular attention has been given to their formation. Some mechanisms are proposed to explain the formation of the main products. From the results of this study it is possible to predict the reactivity and energy content of the pyrolysis products and evaluate their potential use as biofuels in renewable applications.

1,234 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the characteristics of food waste, the principles of anaerobic digestion, the process parameters, and two approaches (pretreatment and co-digestion) for enhancing AD in food waste.
Abstract: The uncontrolled discharge of large amounts of food waste (FW) causes severe environmental pollution in many countries. Within different possible treatment routes, anaerobic digestion (AD) of FW into biogas, is a proven and effective solution for FW treatment and valorization. The present paper reviews the characteristics of FW, the principles of AD, the process parameters, and two approaches (pretreatment and co-digestion) for enhancing AD of food waste. Among the successive digestion reactions, hydrolysis is considered to be the rate-limiting step. To enhance the performance of AD, several physical, thermo-chemical, biological or combined pretreatments are reviewed. Moreover, a promising way for improving the performance of AD is the co-digestion of FW with other organic substrates, as confirmed by numerous studies, where a higher buffer capacity and an optimum nutrient balance enhance the biogas/methane yields of the co-digestion system.

971 citations


Journal ArticleDOI
TL;DR: In this article, a review summarizes and organizes the literature on life cycle assessment (LCA), life cycle energy analysis (LCEA), and life cycle cost analysis for environmental evaluation of buildings and building related industry and sector (including construction products, construction systems, buildings, and civil engineering constructions).
Abstract: This review summarizes and organizes the literature on life cycle assessment (LCA), life cycle energy analysis (LCEA) and life cycle cost analysis (LCCA) studies carried out for environmental evaluation of buildings and building related industry and sector (including construction products, construction systems, buildings, and civil engineering constructions). The review shows that most LCA and LCEA are carried out in what is shown as “exemplary buildings”, that is, buildings that have been designed and constructed as low energy buildings, but there are very few studies on “traditional buildings”, that is, buildings such as those mostly found in our cities. Similarly, most studies are carried out in urban areas, while rural areas are not well represented in the literature. Finally, studies are not equally distributed around the world.

965 citations


Journal ArticleDOI
TL;DR: The need for grid-connected energy storage systems will grow worldwide in the next future due to the expansion of intermittent renewable energy sources and the inherent request for services of power quality and energy management as discussed by the authors.
Abstract: The need for grid-connected energy storage systems will grow worldwide in the next future due to the expansion of intermittent renewable energy sources and the inherent request for services of power quality and energy management. Electrochemical storage systems will be a solution of choice in many applications because of their localization flexibility, efficiency, scalability, and other appealing features. Among them redox flow batteries (RFBs) exhibit very high potential for several reasons, including power/energy independent sizing, high efficiency, room temperature operation, and extremely long charge/discharge cycle life. RFB technologies make use of different metal ion couples as reacting species. The best-researched and already commercially exploited types are all-vanadium redox batteries, but several research programs on other redox couples are underway in a number of countries. These programs aim at achieving major improvements resulting in more compact and cheaper systems, which can take the technology to a real breakthrough in stationary grid-connected applications.

847 citations


Journal ArticleDOI
TL;DR: A critical review of the existing body of knowledge of researches related to green building is presented in this article, where the common research themes and methodology were identified, such as the definition and scope of green building, quantification of benefits of green buildings compared to conventional buildings, and various approaches to achieve green buildings.
Abstract: Green building is one of measures been put forward to mitigate significant impacts of the building stock on the environment, society and economy. However, there is lack of a systematic review of this large number of studies that is critical for the future endeavor. The last decades have witnessed rapid growing number of studies on green building. This paper reports a critical review of the existing body of knowledge of researches related to green building. The common research themes and methodology were identified. These common themes are the definition and scope of green building; quantification of benefits of green buildings compared to conventional buildings; and various approaches to achieve green buildings. It is found that the existing studies played predominately focus on the environmental aspect of green building. Other dimensions of sustainability of green building, especially the social sustainability is largely overlooked. Future research opportunities were identified such as effects of climatic conditions on the effectiveness of green building assessment tools, validation of real performance of green buildings, unique demands of specific population, and future proofing.

808 citations


Journal ArticleDOI
TL;DR: A review of the achievements and perspectives of anaerobic co-digestion within the period 2010-2013 is presented in this paper, which represents a continuation of the previous review made by the authors.
Abstract: Anaerobic digestion is a commercial reality for several kinds of waste. Nonetheless, anaerobic digestion of single substrates presents some drawbacks linked to substrate characteristics. Anaerobic co-digestion, the simultaneous digestion of two or more substrates, is a feasible option to overcome the drawbacks of mono-digestion and to improve plants economic feasibility. At present, since 50% of the publication has been published in the last two years, anaerobic co-digestion can be considered the most relevant topic within anaerobic digestion research. The aim of this paper is to present a review of the achievements and perspectives of anaerobic co-digestion within the period 2010-2013, which represents a continuation of the previous review made by the authors [3]. In the present review, the publications have been classified as for the main substrate, i.e., animal manures, sewage sludge and biowaste. Animal manures stand as the most reported substrate, agro-industrial waste and the organic fraction of the municipal solid waste being the most reported co-substrate. Special emphasis has been made to the effect of the co-digestion over digestate quality, since land application seems to be the best option for digestate recycling. Traditionally, anaerobic co-digestion between sewage sludge and the organic fraction of the municipal solid waste has been the most reported co-digestion mixture. However, between 2010 and 2013 the publications dealing with fats, oils and greases and algae as sludge co-substrate have increased. This is because both co-substrates can be obtained at the same wastewater treatment plant. In contrast, biowaste as a main substrate has not been as studied as manures or sewage sludge. Finally, three interdisciplinary sections have been written for addressing novelty aspects in anaerobic co-digestion, i.e., pre-treatments, microbial dynamics and modeling. However, much effort needs to be done in these later aspects to better understand and predict anaerobic co-digestion.

801 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive review and assessment of the latest research and advancement of electric vehicles (EVs) interaction with smart grid portraying the future electric power system model.
Abstract: This paper presents a comprehensive review and assessment of the latest research and advancement of electric vehicles (EVs) interaction with smart grid portraying the future electric power system model. The concept goal of the smart grid along with the future deployment of the EVs puts forward various challenges in terms of electric grid infrastructure, communication and control. Following an intensive review on advanced smart metering and communication infrastructures, the strategy for integrating the EVs into the electric grid is presented. Various EV smart charging technologies are also extensively examined with the perspective of their potential, impacts and limitations under the vehicle-to-grid (V2G) phenomenon. Moreover, the high penetration of renewable energy sources (wind and photovoltaic solar) is soaring up into the power system. However, their intermittent power output poses different challenges on the planning, operation and control of the power system networks. On the other hand, the deployment of EVs in the energy market can compensate for the fluctuations of the electric grid. In this context, a literature review on the integration of the renewable energy and the latest feasible solution using EVs with the insight of the promising research gap to be covered up are investigated. Furthermore, the feasibility of the smart V2G system is thoroughly discussed. In this paper, the EVs interactions with the smart grid as the future energy system model are extensively discussed and research gap is revealed for the possible solutions.

Journal ArticleDOI
TL;DR: In this article, the authors look at models relevant to national and international energy policy, grouping them into four categories: energy systems optimization models, energy systems simulation models, power systems and electricity market models, and qualitative and mixed-methods scenarios.
Abstract: Energy systems models are important methods used to generate a range of insight and analysis on the supply and demand of energy. Developed over the second half of the twentieth century, they are now seeing increased relevance in the face of stringent climate policy, energy security and economic development concerns, and increasing challenges due to the changing nature of the twenty-first century energy system. In this paper, we look particularly at models relevant to national and international energy policy, grouping them into four categories: energy systems optimization models, energy systems simulation models, power systems and electricity market models, and qualitative and mixed-methods scenarios. We examine four challenges they face and the efforts being taken to address them: (1) resolving time and space, (2) balancing uncertainty and transparency, (3) addressing the growing complexity of the energy system, and (4) integrating human behavior and social risks and opportunities. In discussing these challenges, we present possible avenues for future research and make recommendations to ensure the continued relevance for energy systems models as important sources of information for policy-making.

Journal ArticleDOI
TL;DR: The main objective of the paper is to provide the current status of these softwares to provide basic insight for a researcher to identify and utilize suitable tool for research and development studies of hybrid systems.
Abstract: Hybrid energy systems are being utilized for supplying electrical energy in urban, rural and remote areas to overcome the intermittence of solar and wind resources. A hybrid renewable energy system incorporates two or more electricity generation options based on renewable energy or fossil fuel unit. The techno-economic analysis of the hybrid system is essential for the efficient utilization of renewable energy resources. Due to multiple generation systems, hybrid system analysis, is quite complex and requires to be analyzed thoroughly. This requires software tools for the design, analysis, optimization, and economic viability of the systems. In this paper, 19 softwares with their main features and current status are presented. The softwares studied are HOMER, Hybrid2, RETScreen, iHOGA, INSEL, TRNSYS, iGRHYSO, HYBRIDS, RAPSIM, SOMES, SOLSTOR, HySim, HybSim, IPSYS, HySys, Dymola/Modelica, ARES, SOLSIM, and HYBRID DESIGNER. The research work related to hybrid systems carried out using these softwares at different locations worldwide is also reviewed. The main objective of the paper is to provide the current status of these softwares to provide basic insight for a researcher to identify and utilize suitable tool for research and development studies of hybrid systems. The capabilities of different softwares are also highlighted. The limitations, availability and areas of further research have also been identified.

Journal ArticleDOI
TL;DR: In this article, the authors discuss various chemical pretreatment processes, feasibility of the processes at industrial scale in terms of the mechanisms involved, advantages, disadvantages and economic assessment, and it is not possible to define the best pretreatment method as it depends on many factors such as type of lignocellulosic biomass, process parameters, environmental impact, economical feasibility, etc.
Abstract: Lignocelluloses are often a major or sometimes the sole components in different waste streams from various sources such as industries, forestry, agriculture and municipalities. It represents an as-of-yet untapped source of fermentable sugars for significant industrial use. Many physico-chemical, structural and compositional factors hinder the hydrolysis of components present in the biomass to sugars and other organic compounds that can later be converted into fuels. During the past few years, a large number of chemical pretreatment methods including lime, acid, steam explosion, sulfur dioxide explosion, ammonia fiber explosion, ionic liquid and others have been developed for efficient pretreatment of biomass. Many pretreatment methods have shown high sugar yields i.e. more than 90% of the theoretical yield from lignocelluloses. In this review, we discuss various chemical pretreatment processes, feasibility of the processes at industrial scale in terms of the mechanisms involved, advantages, disadvantages and economic assessment. It is not possible to define the best pretreatment method as it depends on many factors such as type of lignocellulosic biomass, process parameters, environmental impact, economical feasibility, etc. However, some of these chemical pretreatments have disadvantages such as formation of inhibitory compounds especially furfural and 5-hydroxyl methyl furfural (HMF).

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive and significant research conducted on state-of-the-art intelligent control systems for energy and comfort management in smart energy buildings (SEB's).
Abstract: Buildings all around the world consume a significant amount of energy, which is more or less one-third of the total primary energy resources. This has raised concerns over energy supplies, rapid energy resource depletion, rising building service demands, improved comfort life styles along with the increased time spent in buildings; consequently, this has shown a rising energy demand in the near future. However, contemporary buildings’ energy efficiency has been fast tracked solution to cope/limit the rising energy demand of this sector. Building energy efficiency has turned out to be a multi-faceted problem, when provided with the limitation for the satisfaction of the indoor comfort index. However, the comfort level for occupants and their behavior have a significant effect on the energy consumption pattern. It is generally perceived that energy unaware activities can also add one-third to the building’s energy performance. Researchers and investigators have been working with this issue for over a decade; yet it remains a challenge. This review paper presents a comprehensive and significant research conducted on state-of-the-art intelligent control systems for energy and comfort management in smart energy buildings (SEB’s). It also aims at providing a building research community for better understanding and up-to-date knowledge for energy and comfort related trends and future directions. The main table summarizes 121 works closely related to the mentioned issue. Key areas focused on include comfort parameters, control systems, intelligent computational methods, simulation tools, occupants’ behavior and preferences, building types, supply source considerations and countries research interest in this sector. Trends for future developments and existing research in this area have been broadly studied and depicted in a graphical layout. In addition, prospective future advancements and gaps have also been discussed comprehensively.

Journal ArticleDOI
TL;DR: The potential of bioenergy for climate change mitigation remains unclear due to large uncertainties about future agricultural yield improvements and land availability for biomass plantations as discussed by the authors, and large-scale cultivation of dedicated biomass is likely to affect bioenergy potentials, global food prices and water scarcity.
Abstract: The increasing prices and environmental impacts of fossil fuels have made the production of biofuels to reach unprecedented volumes over the last 15 years. Given the increasing land requirement for biofuel production, the assessment of the impacts that extensive biofuel production may cause to food supply and to the environment has considerable importance. Agriculture faces some major inter-connected challenges in delivering food security at a time of increasing pressures from population growth, changing consumption patterns and dietary preferences, and post-harvest losses. At the same time, there are growing opportunities and demands for the use of biomass to provide additional renewables, energy for heat, power and fuel, pharmaceuticals and green chemical feedstocks. Biomass from cellulosic bioenergy crops is expected to play a substantial role in future energy systems. However, the worldwide potential of bioenergy is limited, because all land is multi-functional and land is also needed for food, feed, timber, and fiber production, and for nature conservation and climate protection. Furthermore, the potential of bioenergy for climate change mitigation remains unclear due to large uncertainties about future agricultural yield improvements and land availability for biomass plantations. Large-scale cultivation of dedicated biomass is likely to affect bioenergy potentials, global food prices and water scarcity. Therefore, integrated policies for energy, land use and water management are needed. As biomass contains all the elements found in fossil resources, albeit in different combinations, therefore present and developing technologies can lead to a future based on renewable, sustainable and low carbon economies. This article presents [1] risks to food and energy security [2] estimates of bioenergy potential with regard to biofuel production, and [3] the challenges of the environmental impact.

Journal ArticleDOI
TL;DR: This paper reviews the building electrical energy forecasting method using artificial intelligence (AI) methods such as support vector machine (SVM) and artificial neural networks (ANN), regarding the potential of hybrid method of Group Method of Data Handling and Least Square Support Vector Machine (LSSVM), or known as GLSSVM, to forecastBuilding electrical energy consumption.
Abstract: The rapid development of human population, buildings and technology application currently has caused electric consumption to grow rapidly. Therefore, efficient energy management and forecasting energy consumption for buildings are important in decision-making for effective energy saving and development in particular places. This paper reviews the building electrical energy forecasting method using artificial intelligence (AI) methods such as support vector machine (SVM) and artificial neural networks (ANN). Both methods are widely used in the field of forecasting and their aim on finding the most accurate approach is ever continuing. Besides the already existing single method of forecasting, the hybridization of the two forecasting methods has the potential to be applied for more accurate results. Further research works are currently ongoing, regarding the potential of hybrid method of Group Method of Data Handling (GMDH) and Least Square Support Vector Machine (LSSVM), or known as GLSSVM, to forecast building electrical energy consumption.

Journal ArticleDOI
TL;DR: This comprehensive review article spots the light on one of the most interesting microalga Chlorella vulgaris and assembles the history and a thorough description of its ultrastructure and composition according to growth conditions.
Abstract: Economic and technical problems related to the reduction of petroleum resources require the valorisation of renewable raw material Recently, microalgae emerged as promising alternative feedstock that represents an enormous biodiversity with multiple benefits exceeding the potential of conventional agricultural feedstock Thus, this comprehensive review article spots the light on one of the most interesting microalga Chlorella vulgaris It assembles the history and a thorough description of its ultrastructure and composition according to growth conditions The harvesting techniques are presented in relation to the novel algo-refinery concept, with their technological advancements and potential applications in the market

Journal ArticleDOI
TL;DR: In this paper, the authors summarized and divided recent intensification technologies of water electrolysis into three categories: external field, new electrolyte composition, and new thermodynamic reaction system.
Abstract: Water electrolysis derived by renewable energy such as solar energy and wind energy is a sustainable method for hydrogen production due to high purity, simple and green process. One of the challenges is to reduce energy consumption of water electrolysis for large-scale application in future. Cell voltage, an important criterion of energy consumption, consists of theoretical decomposition voltage (U-theta), ohmic voltage drop (i*Sigma R) and reaction overpotential (eta). The kinetic and thermodynamic roots of high cell voltage are analyzed systemically in this review. During water electrolysis, bubble coverage on electrode surface and bubble dispersion in electrolyte, namely bubble effect, result in high ohmic voltage drop and large reaction overpotential. Bubble effect is one of the most key factors for high energy consumption. Based on the theoretical analysis, we summarize and divide recent intensification technologies of water electrolysis into three categories: external field, new electrolyte composition and new thermodynamic reaction system. The fundamentals and development of these intensification technologies are discussed and reviewed. Reaction overpotential and ohmic voltage drop are improved kinetically by external field or new electrolyte composition. The thermodynamic decomposition voltage of water is also reduced by new reaction systems such as solid oxide electrolysis cell (SOEC) and carbon assisted water electrolysis (CAWE). (C) 2013 Elsevier Ltd. All rights reserved.

Journal ArticleDOI
TL;DR: In this paper, basic knowledge of thermoelectric materials and an overview of parameters that affect the figure of merit ZT are provided, as well as the prospects for the optimization and their applications are also discussed.
Abstract: Developing thermoelectric materials with superior performance means tailoring interrelated thermoelectric physical parameters – electrical conductivities, Seebeck coefficients, and thermal conductivities – for a crystalline system. High electrical conductivity, low thermal conductivity, and a high Seebeck coefficient are desirable for thermoelectric materials. Therefore, knowledge of the relation between electrical conductivity and thermal conductivity is essential to improve thermoelectric properties. In general, research in recent years has focused on developing thermoelectric structures and materials of high efficiency. The importance of this parameter is universally recognized; it is an established, ubiquitous, routinely used tool for material, device, equipment and process characterization both in the thermoelectric industry and in research. In this paper, basic knowledge of thermoelectric materials and an overview of parameters that affect the figure of merit ZT are provided. The prospects for the optimization of thermoelectric materials and their applications are also discussed.

Journal ArticleDOI
TL;DR: In this article, various types of energy storage including compressed air energy storage (CAES), flywheel energy storage, FES, pumped hydro energy storage and thermal energy storage are discussed.
Abstract: Energy storage becomes a key element in achieving goals in energy sustainability that lead to energy and cost savings. This paper discusses various types of energy storage including compressed air energy storage (CAES), flywheel energy storage (FES), pumped hydro energy storage (PHES), battery energy storage (BES), flow battery energy storage (FBES), superconducting magnetic energy storage (SMES), super capacitor energy storage (SCES), hydrogen energy storage, synthetic fuels, and thermal energy storage (TES) with additional information about the recent update of the technology. In the final part of this paper, the comparison and barriers to deploying the technologies are also given in order to give a better view about the energy storage technique.

Journal ArticleDOI
TL;DR: In this article, the most common methods described in the literature for the production of microencapsulated phase change materials (MEPCMs) are interfacial polymerization, suspension polymerization and spray drying.
Abstract: Microencapsulation of phase change materials (PCMs) is an effective way of enhancing their thermal conductivity and preventing possible interaction with the surrounding and leakage during the melting process, where there is no complete overview of the several methods and techniques for microencapsulation of different kinds of PCMs that leads to microcapsules with different morphology, structure, and thermal properties. In this paper, microencapsulation methods are perused and classified into three categories, i.e. physical, physic-chemical, and chemical methods. It summarizes the techniques used for microencapsulation of PCMs and hence provides a useful tool for the researchers working in this area. Among all the microencapsulation methods, the most common methods described in the literature for the production of microencapsulated phase change materials (MEPCMs) are interfacial polymerization, suspension polymerization, coacervation, emulsion polymerization, and spray drying.

Journal ArticleDOI
TL;DR: The history of US shale gas in this article is divided into three periods and based on the change of oil price (i.e., the period before the 1970s oil crisis, the period from 1970s to 2000, and the period since 2000), the US has moved from being one of the world's biggest importers of gas to being selfsufficient in less than a decade, with the shale gas production increasing 12fold (from 2000 to 2010).
Abstract: Extraction of natural gas from shale rock in the United States (US) is one of the landmark events in the 21st century. The combination of horizontal drilling and hydraulic fracturing can extract huge quantities of natural gas from impermeable shale formations, which were previously thought to be either impossible or uneconomic to produce. This review offers a comprehensive insight into US shale gas opportunities, appraising the evolution, evidence and the challenges of shale gas production in the US. The history of US shale gas in this article is divided into three periods and based on the change of oil price (i.e., the period before the 1970s oil crisis, the period from 1970s to 2000, and the period since 2000), the US has moved from being one of the world's biggest importers of gas to being self-sufficient in less than a decade, with the shale gas production increasing 12-fold (from 2000 to 2010). The US domestic natural gas price hit a 10-year low in 2012. The US domestic natural gas price in the first half of 2012 was about $2 per million British Thermal Unit (BTU), compared with Brent crude, the world benchmark price for oil, now about $ 80–100/barrel, or $14–17 per million BTU. Partly due to an increase in gas-fired power generation in response to low gas prices, US carbon emissions from fossil-fuel combustion fell by 430 million ton CO 2 – more than any other country – between 2006 and 2011. Shale gas also stimulated economic growth, creating 600,000 new jobs in the US by 2010. However, the US shale gas revolution would be curbed, if the environmental risks posed by hydraulic fracturing are not managed effectively. The hydraulic fracturing is water intensive, and can cause pollution in the marine environment, with implications for long-term environmental sustainability in several ways. Also, large amounts of methane, a powerful greenhouse gas, can be emitted during the shale gas exploration and production. Hydraulic fracturing also may induce earthquakes. These environmental risks need to be managed by good practices which is not being applied by all the producers in all the locations. Enforcing stronger regulations are necessary to minimize risk to the environment and on human health. Robust regulatory oversight can however increase the cost of extraction, but stringent regulations can foster an historic opportunity to provide cheaper and cleaner gas to meet the consumer demand, as well as to usher in the future growth of the industry.

Journal ArticleDOI
TL;DR: A detailed review of current approaches to model development and calibration is presented, highlighting the importance of uncertainty in the calibration process and the various analytical and mathematical/statistical tools employed by practitioners to date.
Abstract: Renewable and Sustainable Energy Reviews 37 (2014) 123–141 Contents lists available at ScienceDirect Renewable and Sustainable Energy Reviews journal homepage: www.elsevier.com/locate/rser A review of methods to match building energy simulation models to measured data Daniel Coakley a,b, n , Paul Raftery c , Marcus Keane a,b a Department of Civil Engineering, NUI Galway, Ireland Informatics Research Unit for Sustainable Engineering (IRUSE), NUI Galway, Ireland c Centre for the Built Environment (CBE), University of California, Berkeley, United States b art ic l e i nf o a b s t r a c t Article history: Received 19 March 2014 Accepted 3 May 2014 Whole building energy simulation (BES) models play a significant role in the design and optimisation of buildings. Simulation models may be used to compare the cost-effectiveness of energy-conservation measures (ECMs) in the design stage as well as assessing various performance optimisation measures during the operational stage. However, due to the complexity of the built environment and prevalence of large numbers of independent interacting variables, it is difficult to achieve an accurate representation of real-world building operation. Therefore, by reconciling model outputs with measured data, we can achieve more accurate and reliable results. This reconciliation of model outputs with measured data is known as calibration. This paper presents a detailed review of current approaches to model development and calibration, highlighting the importance of uncertainty in the calibration process. This is accompanied by a detailed assessment of the various analytical and mathematical/statistical tools employed by practitioners to date, as well as a discussion on both the problems and the merits of the presented approaches. & 2014 Elsevier Ltd. All rights reserved. Keywords: Review Calibration Optimisation Simulation EnergyPlus Uncertainty Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Building energy performance simulation (BEPS) tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Benefits of BEPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Problems with BEPS and model calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3. Methods for assessing calibration performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4. Uncertainty in building simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5. Current approaches to BEPS calibration: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Analytical tools and techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Mathematical/statistical techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Summary of manual calibration developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Characterisation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Advanced graphical approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Procedural extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Summary of automated calibration developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Optimisation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Alternative modelling techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 7. Graphical summary of reviewed papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Appendix A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 n Corresponding author at: Department of Civil Engineering, NUI Galway, Ireland. Tel.: þ 353 87 2285147. E-mail address: daniel.coakley@nuigalway.ie (D. Coakley). http://dx.doi.org/10.1016/j.rser.2014.05.007 1364-0321/& 2014 Elsevier Ltd. All rights reserved.

Journal ArticleDOI
TL;DR: In this paper, the state of the art on high temperature (573-1273K)solar thermal energy storage based on chemical reactions is presented, which seems to be the most advantageous one for long-term storage.
Abstract: Solar thermal energy represents an increasingly attractive renewable source.However,to provide continuous availability of this energy,it must be stored. This paper presents the state of the art on high temperature(573-1273K)solar thermal energy storage based on chemical reactions,which seems to be the most advantageous one for long-term storage. The paper summarizes the numerical,experimental and technological studies done so far. Each system is described and the advantages and drawbacks of each reaction couple are considered.

Journal ArticleDOI
TL;DR: In this article, an extensive review on various issues related to Integrated Renewable Energy System (IRES) based power generation is presented, including integration configurations, storage options, sizing methodologies and system control for energy flow management.
Abstract: Uneconomical extension of the grid has led to generation of electric power at the end user facility and has been proved to be cost effective and to an extent efficient. With augmented significance on eco-friendly technologies the use of renewable energy sources such as micro-hydro, wind, solar, biomass and biogas is being explored. This paper presents an extensive review on various issues related to Integrated Renewable Energy System (IRES) based power generation. Issues related to integration configurations, storage options, sizing methodologies and system control for energy flow management are discussed in detail. For stand-alone applications integration of renewable energy sources, performed through DC coupled, AC coupled or hybrid DC–AC coupled configurations, are studied in detail. Based on the requirement of storage duration in isolated areas, storage technology options can be selected for integrated systems. Uncertainties involved in designing an effective IRES based power generation system for isolated areas is accounted due to highly dynamic nature of availability of sources and the demand at site. Different methodologies adopted and reported in literature for sizing of the system components are presented. Distributed control, centralized and hybrid control schemes for energy flow management in IRES have also been discussed.

Journal ArticleDOI
TL;DR: In this article, a review of the central receiver designs for concentrating solar power applications with high-temperature power cycles is presented, which includes low-cost and durable materials that can withstand high concentration ratios (~1000 suns), heat-transfer fluids, and low radiative and convective heat losses leading to a thermal efficiency >90%.
Abstract: This paper reviews central receiver designs for concentrating solar power applications with high-temperature power cycles Desired features include low-cost and durable materials that can withstand high concentration ratios (~1000 suns), heat-transfer fluids that can withstand temperatures >650 °C, high solar absorptance, and low radiative and convective heat losses leading to a thermal efficiency >90% Different receiver designs are categorized and evaluated in this paper: (1) gas receivers, (2) liquid receivers, and (3) solid particle receivers For each design, the following information is provided: general principle and review of previous modeling and testing activities, expected outlet temperature and thermal efficiency, benefits, perceived challenges, and research needs Emerging receiver designs that can enable higher thermal-to-electric efficiencies (50% or higher) using advanced power cycles such as supercritical CO 2 closed-loop Brayton cycles include direct heating of CO 2 in tubular receiver designs (external or cavity) that can withstand high internal fluid pressures (~20 MPa) and temperatures (~700 °C) Indirect heating of other fluids and materials that can be stored at high temperatures such as advanced molten salts, liquid metals, or solid particles are also being pursued, but challenges include stability, heat loss, and the need for high-temperature heat exchangers

Journal ArticleDOI
TL;DR: In this paper, the thermal reliability and stability of fatty acids as phase change materials and their heat transfer characteristics in a unit are analyzed. And the energy storage systems of three kinds of fatty acid as PCMs are discussed.
Abstract: Fatty acids as phase change materials have attracted much attention for their various applications in building energy efficiency, solar heating systems and air-conditioning systems. After summarizing the basic characteristics of fatty acids, eutectic mixtures of fatty acids and fatty acid esters, as well as the preparation and characteristics of fatty acid composites as phase change materials (PCMs), this paper analyzes the thermal reliability and stability of fatty acids as PCMs and their heat transfer characteristics in a unit which is followed by an introduction to the energy storage systems of three kinds of fatty acids as PCMs. Besides, it also points out the future research direction of fatty acids as PCMs as a solution of the insufficiency and flaws of current researches.

Journal ArticleDOI
TL;DR: In this article, a comprehensive review of the strategies to produce furfural, new approaches and numerous possibilities to utilize it in industrial and laboratory sector for the production of fuel additives and value-added chemicals are discussed.
Abstract: As our high dependence on the supply of diminishing fossil fuel reserves raise great concerns in its environmental, political and economic consequences, utilization of renewable biomass as an alternative resource has become increasingly important. Along this background, furfural as a building block, offers a promising, rich platform for lignocellulosic biofuels and value-added chemicals. These include 2-methylfuran and 2-methyltetrahydrofuran, furfuryl alcohol, tetrahydrofurfuryl alcohol, furan, tetrahydrofuran as well as various cyclo-products (e.g., cyclopentanol, cyclopentanone). The various production routes started from furfural to various fuel additives and chemicals are critically reviewed, and the current technologies for efficient production are identified. Their potential applications as well as the fuel properties of these products are discussed. Challenges and areas that need improvement are also highlighted in the corresponding area. In short, we conduct a comprehensive review of the strategies to produce furfural, new approaches and numerous possibilities to utilize furfural in industrial and laboratory sector for the production of fuel additives and value-added chemicals.

Journal ArticleDOI
TL;DR: Aerogel is a kind of synthetic porous material, in which the liquid component of the gel is replaced with a gas as mentioned in this paper, and it is considered as one of the most promising thermal insulating materials for building applications.
Abstract: Aerogel is a kind of synthetic porous material, in which the liquid component of the gel is replaced with a gas. Aerogel has specific acoustic properties and remarkably lower thermal conductivity (≈0.013 W/m K) than the other commercial insulating materials. It also has superior physical and chemical characteristics like the translucent structure. Therefore, it is considered as one of the most promising thermal insulating materials for building applications. Besides its applications in residential and industrial buildings, aerogel has a great deal of application areas such as spacecrafts, skyscrapers, automobiles, electronic devices, clothing etc. Although current cost of aerogel still remains higher compared to the conventional insulation materials, intensive efforts are made to reduce its manufacturing cost and hence enable it to become widespread all over the world. In this study, a comprehensive review on aerogel and its utilization in buildings are presented. Thermal insulation materials based on aerogel are illustrated with various applications. Economic analysis and future potential of aerogel are also considered in the study.