scispace - formally typeset
Open AccessJournal ArticleDOI

Assessing Evidence for a Pervasive Alteration in Tropical Tree Communities

Reads0
Chats0
TLDR
The results do not support the hypothesis that fast-growing species are consistently increasing in dominance in tropical tree communities, and suggest that plots may be simultaneously recovering from past disturbances and affected by changes in resource availability.
Abstract
In Amazonian tropical forests, recent studies have reported increases in aboveground biomass and in primary productivity, as well as shifts in plant species composition favouring fast-growing species over slow-growing ones. This pervasive alteration of mature tropical forests was attributed to global environmental change, such as an increase in atmospheric CO2 concentration, nutrient deposition, temperature, drought frequency, and/or irradiance. We used standardized, repeated measurements of over 2 million trees in ten large (16–52 ha each) forest plots on three continents to evaluate the generality of these findings across tropical forests. Aboveground biomass increased at seven of our ten plots, significantly so at four plots, and showed a large decrease at a single plot. Carbon accumulation pooled across sites was significant (+0.24 MgC ha−1 y−1, 95% confidence intervals [0.07, 0.39] MgC ha−1 y−1), but lower than reported previously for Amazonia. At three sites for which we had data for multiple census intervals, we found no concerted increase in biomass gain, in conflict with the increased productivity hypothesis. Over all ten plots, the fastest-growing quartile of species gained biomass (+0.33 [0.09, 0.55] % y−1) compared with the tree community as a whole (+0.15 % y−1); however, this significant trend was due to a single plot. Biomass of slow-growing species increased significantly when calculated over all plots (+0.21 [0.02, 0.37] % y−1), and in half of our plots when calculated individually. Our results do not support the hypothesis that fast-growing species are consistently increasing in dominance in tropical tree communities. Instead, they suggest that our plots may be simultaneously recovering from past disturbances and affected by changes in resource availability. More long-term studies are necessary to clarify the contribution of global change to the functioning of tropical forests.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal Article

Climate Change 2007: The Physical Science Basis.

TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Journal ArticleDOI

Towards a worldwide wood economics spectrum

TL;DR: It is suggested that, similar to the manifold that tree species leaf traits cluster around the 'leaf economics spectrum', a similar 'wood economics spectrum' may be defined.
Journal ArticleDOI

Benchmark map of forest carbon stocks in tropical regions across three continents.

TL;DR: A “benchmark” map of biomass carbon stocks over 2.5 billion ha of forests on three continents, encompassing all tropical forests, for the early 2000s is presented, which will be invaluable for REDD assessments at both project and national scales.
Journal ArticleDOI

Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere

TL;DR: In this paper, it was shown that carbon dioxide discharged to the oceans is only a fraction of that entering rivers from terrestrial ecosystems via soil respiration, leaching, chemical weathering, and physical erosion.
References
More filters

Climate change 2007: the physical science basis

TL;DR: The first volume of the IPCC's Fourth Assessment Report as mentioned in this paper was published in 2007 and covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.
Journal ArticleDOI

Very high resolution interpolated climate surfaces for global land areas.

TL;DR: In this paper, the authors developed interpolated climate surfaces for global land areas (excluding Antarctica) at a spatial resolution of 30 arc s (often referred to as 1-km spatial resolution).
Book

Climate change 2007 : the physical science basis : contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

Susan Solomon
TL;DR: In this article, the authors present a historical overview of climate change science, including changes in atmospheric constituents and radiative forcing, as well as changes in snow, ice, and frozen ground.
Journal ArticleDOI

Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components

TL;DR: Integrating conceptually similar models of the growth of marine and terrestrial primary producers yielded an estimated global net primary production of 104.9 petagrams of carbon per year, with roughly equal contributions from land and oceans.
Related Papers (5)