scispace - formally typeset
Open AccessJournal ArticleDOI

Bounding the role of black carbon in the climate system: A scientific assessment

Reads0
Chats0
TLDR
In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract
Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI

Anthropogenic and Natural Radiative Forcing

TL;DR: Myhre et al. as discussed by the authors presented the contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 2013: Anthropogenic and Natural Radiative forcing.
Journal Article

An inventory of gaseous and primary aerosol emissions in Asia in the year 2000 : NASA global tropospheric experiment transport and chemical evolution over the pacific (TRACE-P): Measurements and analysis (TRACEP1)

TL;DR: In this paper, an inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment, in which emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia.
Journal ArticleDOI

Chemistry of atmospheric brown carbon.

TL;DR: Understanding of the climate-related properties of atmospheric OC is still incomplete and the specific ways in which OC impacts atmospheric environment and climate forcing are just beginning to be understood.
References
More filters
Journal ArticleDOI

Aerosol mass and black carbon concentrations, a two year record at NCO-P (5079 m, Southern Himalayas)

TL;DR: In this article, the first two-year averages of PM1 and PM1−10 mass were 1.94 μg m−3 and 1.88 μgm−3, with standard deviations of 3.3 and 4.45 μg m −3, respectively.
Journal ArticleDOI

Atmospheric budget of primary biological aerosol particles from fungal spores

TL;DR: In this article, the authors used mannitol, a biotracer for fungal spores, to constrain the first global model (GEOS-Chem) simulation of primary biological aerosol particles from fungi.
Journal ArticleDOI

An Exploratory Study of Ice Nucleation by Soot Aerosols

TL;DR: In this article, the activities of nearly monodisperse soot particles as ice nuclei at temperatures below −20°C were examined in a short series of experiments, where a continuous slow expansion cloud chamber was used to cause cloud formation and growth on soot during simulations of adiabatic cooling by expansion.
Journal ArticleDOI

An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power

TL;DR: Vermote et al. as discussed by the authors used both Aqua and Terra MODIS observations to estimate the fire radiative energy using a simple model to parameterize the fire diurnal cycle based on the long-term ratio between Terra and Aqua MODIS FRP.
Journal ArticleDOI

The Copenhagen Accord for limiting global warming: Criteria, constraints, and available avenues

TL;DR: The criteria for limiting the warming below 2 °C is developed, the constraints imposed on policy makers are identified, available mitigation avenues are explored, and methane and hydrofluorocarbons emerge as the prime targets.
Related Papers (5)