scispace - formally typeset
Open AccessJournal ArticleDOI

Bounding the role of black carbon in the climate system: A scientific assessment

Reads0
Chats0
TLDR
In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract
Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI

Anthropogenic and Natural Radiative Forcing

TL;DR: Myhre et al. as discussed by the authors presented the contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 2013: Anthropogenic and Natural Radiative forcing.
Journal Article

An inventory of gaseous and primary aerosol emissions in Asia in the year 2000 : NASA global tropospheric experiment transport and chemical evolution over the pacific (TRACE-P): Measurements and analysis (TRACEP1)

TL;DR: In this paper, an inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment, in which emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia.
Journal ArticleDOI

Chemistry of atmospheric brown carbon.

TL;DR: Understanding of the climate-related properties of atmospheric OC is still incomplete and the specific ways in which OC impacts atmospheric environment and climate forcing are just beginning to be understood.
References
More filters
Journal ArticleDOI

Climate-relevant properties of diesel particulate emissions: results from a piggyback study in Bangkok, Thailand.

TL;DR: The history of average emission rate and chemical composition during the DIESEL project suggests that about 25 vehicles can provide a regional PM emission rate for normal vehicles, whereas other studies such as remote sensing measurements will be required to estimate the important contribution of high-emitting vehicles.
Journal ArticleDOI

Overview of the 1999 Atlanta Supersite Project

TL;DR: The Atlanta Supersite Project (ATP) as discussed by the authors evaluated and compared advanced measurement methods for particulate matter mass and its components, including filter-and denuder-based time-integrated or discrete samplers, a variety of semicontinuous methods measuring mass, its major components (sulfate, nitrate, ammonium, organic carbon, elemental carbon, trace elements) and gas-phase precursors, and for the first time ever, a comparison among particle mass spectrometers; four in total.
Journal ArticleDOI

Diagnostic model evaluation for carbonaceous PM2.5 using organic markers measured in the southeastern U.S.

TL;DR: The Community Multiscale Air Quality model is instrumented to track primary organic and elemental carbon contributions from fifteen different source categories, indicating that modeled contributions from vehicle exhaust and biomass combustion are unbiased across the region.

Impact of California's Air Pollution Laws on Black Carbon and their Implications for Direct Radiative Forcing

TL;DR: In this paper, the authors examined the temporal and the spatial trends in the concentrations of black carbon (BC) recorded by the IMPROVE monitoring network for the past 20 years in California.
Journal ArticleDOI

Sensitivity of multiangle imaging to the optical and microphysical properties of biomass burning aerosols

TL;DR: In this article, the treatment of biomass burning (BB) carbonaceous particles in the Multiangle Imaging SpectroRadiometer (MISR) Standard Aerosol Retrieval Algorithm is assessed, and algorithm refinements are suggested, based on a theoretical sensitivity analysis and comparisons with near-coincident AERONET measurements at representative BB sites.
Related Papers (5)