scispace - formally typeset
Open AccessJournal ArticleDOI

Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine.

Reads0
Chats0
TLDR
This is the deepest sequencing of single gastrointestinal samples reported to date, but microbial richness levels have still not leveled out, and correlations of sequence abundance and hybridization signal intensities were very high for lower-order ranks, but lower at family-level, which was probably due to ambiguous taxonomic groupings.
Abstract
Background: Variations in the composition of the human intestinal microbiota are linked to diverse health conditions. Highthroughput molecular technologies have recently elucidated microbial community structure at much higher resolution than was previously possible. Here we compare two such methods, pyrosequencing and a phylogenetic array, and evaluate classifications based on two variable 16S rRNA gene regions. Methods and Findings: Over 1.75 million amplicon sequences were generated from the V4 and V6 regions of 16S rRNA genes in bacterial DNA extracted from four fecal samples of elderly individuals. The phylotype richness, for individual samples, was 1,400–1,800 for V4 reads and 12,500 for V6 reads, and 5,200 unique phylotypes when combining V4 reads from all samples. The RDP-classifier was more efficient for the V4 than for the far less conserved and shorter V6 region, but differences in community structure also affected efficiency. Even when analyzing only 20% of the reads, the majority of the microbial diversity was captured in two samples tested. DNA from the four samples was hybridized against the Human Intestinal Tract (HIT) Chip, a phylogenetic microarray for community profiling. Comparison of clustering of genus counts from pyrosequencing and HITChip data revealed highly similar profiles. Furthermore, correlations of sequence abundance and hybridization signal intensities were very high for lower-order ranks, but lower at family-level, which was probably due to ambiguous taxonomic groupings. Conclusions: The RDP-classifier consistently assigned most V4 sequences from human intestinal samples down to genuslevel with good accuracy and speed. This is the deepest sequencing of single gastrointestinal samples reported to date, but microbial richness levels have still not leveled out. A majority of these diversities can also be captured with five times lower sampling-depth. HITChip hybridizations and resulting community profiles correlate well with pyrosequencing-based compositions, especially for lower-order ranks, indicating high robustness of both approaches. However, incompatible grouping schemes make exact comparison difficult.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Diversity, stability and resilience of the human gut microbiota

TL;DR: Viewing the microbiota from an ecological perspective could provide insight into how to promote health by targeting this microbial community in clinical treatments.
Journal ArticleDOI

Ribosomal Database Project: data and tools for high throughput rRNA analysis

TL;DR: RDP now includes a collection of fungal large subunit rRNA genes, and most tools are now available as open source packages for download and local use by researchers with high-volume needs or who would like to develop custom analysis pipelines.
Journal ArticleDOI

Through Ageing, and Beyond: Gut Microbiota and Inflammatory Status in Seniors and Centenarians

TL;DR: Evidence is provided for the fact that the ageing process deeply affects the structure of the human gut microbiota, as well as its homeostasis with the host's immune system, because of its crucial role in the host physiology and health status.
References
More filters
Journal ArticleDOI

Basic Local Alignment Search Tool

TL;DR: A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score.
Journal ArticleDOI

Clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice

TL;DR: The sensitivity of the commonly used progressive multiple sequence alignment method has been greatly improved and modifications are incorporated into a new program, CLUSTAL W, which is freely available.
Journal ArticleDOI

MUSCLE: multiple sequence alignment with high accuracy and high throughput

TL;DR: MUSCLE is a new computer program for creating multiple alignments of protein sequences that includes fast distance estimation using kmer counting, progressive alignment using a new profile function the authors call the log-expectation score, and refinement using tree-dependent restricted partitioning.
Book

Bergey's Manual of Systematic Bacteriology

TL;DR: BCL3 and Sheehy cite Bergey's manual of determinative bacteriology of which systematic bacteriology, first edition, is an expansion.
Journal ArticleDOI

Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy

TL;DR: The RDP Classifier can rapidly and accurately classify bacterial 16S rRNA sequences into the new higher-order taxonomy proposed in Bergey's Taxonomic Outline of the Prokaryotes, and the majority of the classification errors appear to be due to anomalies in the current taxonomies.
Related Papers (5)