scispace - formally typeset
Open AccessJournal ArticleDOI

CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes

TLDR
It is found that CRISPR/Cas9 could effectively cleave the endogenous β-globin gene (HBB), however, the efficiency of homologous recombination directed repair (HDR) of HBB was low and the edited embryos were mosaic.
Abstract
Genome editing tools such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated system (Cas) have been widely used to modify genes in model systems including animal zygotes and human cells, and hold tremendous promise for both basic research and clinical applications. To date, a serious knowledge gap remains in our understanding of DNA repair mechanisms in human early embryos, and in the efficiency and potential off-target effects of using technologies such as CRISPR/Cas9 in human pre-implantation embryos. In this report, we used tripronuclear (3PN) zygotes to further investigate CRISPR/Cas9-mediated gene editing in human cells. We found that CRISPR/Cas9 could effectively cleave the endogenous β-globin gene (HBB). However, the efficiency of homologous recombination directed repair (HDR) of HBB was low and the edited embryos were mosaic. Off-target cleavage was also apparent in these 3PN zygotes as revealed by the T7E1 assay and whole-exome sequencing. Furthermore, the endogenous delta-globin gene (HBD), which is homologous to HBB, competed with exogenous donor oligos to act as the repair template, leading to untoward mutations. Our data also indicated that repair of the HBB locus in these embryos occurred preferentially through the non-crossover HDR pathway. Taken together, our work highlights the pressing need to further improve the fidelity and specificity of the CRISPR/Cas9 platform, a prerequisite for any clinical applications of CRSIPR/Cas9-mediated editing.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

CRISPR/Cas9 in Genome Editing and Beyond

TL;DR: The Cas9 protein, derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms.
Journal ArticleDOI

Gene therapy comes of age.

TL;DR: The pioneering work that led the gene therapy field to its current state is reviewed, gene-editing technologies that are expected to play a major role in the field's future are described, and practical challenges in getting these therapies to patients who need them are discussed.
Journal ArticleDOI

Applications of CRISPR technologies in research and beyond

TL;DR: Programmable DNA cleavage using CRISPR–Cas9 enables efficient, site-specific genome engineering in single cells and whole organisms and is being used to expedite crop and livestock breeding, engineer new antimicrobials and control disease- carrying insects with gene drives.
Journal ArticleDOI

Gene therapy clinical trials worldwide to 2017: An update

TL;DR: This review presents the analysis of clinical trials that, to the best of the knowledge, have been or are being performed worldwide, and discusses key trends since the previous review, namely the use of chimeric antigen receptor T cells for the treatment of cancer and advancements in genome editing technologies.
References
More filters
Journal ArticleDOI

Fast and accurate short read alignment with Burrows–Wheeler transform

TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Journal ArticleDOI

The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data

TL;DR: The GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.
Journal ArticleDOI

A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

TL;DR: This study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
Journal ArticleDOI

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: Two different type II CRISPR/Cas systems are engineered and it is demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
Related Papers (5)