scispace - formally typeset
Journal ArticleDOI

Digital microfluidics: is a true lab-on-a-chip possible?

Richard B. Fair
- 08 Mar 2007 - 
- Vol. 3, Iss: 3, pp 245-281
Reads0
Chats0
TLDR
To understand the opportunities and limitations of EWD microfluidics, this paper looks at the development of lab-on-chip applications in a hierarchical approach.
Abstract
The suitability of electrowetting-on-dielectric (EWD) microfluidics for true lab-on-a-chip applications is discussed. The wide diversity in biomedical applications can be parsed into manageable components and assembled into architecture that requires the advantages of being programmable, reconfigurable, and reusable. This capability opens the possibility of handling all of the protocols that a given laboratory application or a class of applications would require. And, it provides a path toward realizing the true lab-on-a-chip. However, this capability can only be realized with a complete set of elemental fluidic components that support all of the required fluidic operations. Architectural choices are described along with the realization of various biomedical fluidic functions implemented in on-chip electrowetting operations. The current status of this EWD toolkit is discussed. However, the question remains: which applications can be performed on a digital microfluidic platform? And, are there other advantages offered by electrowetting technology, such as the programming of different fluidic functions on a common platform (reconfigurability)? To understand the opportunities and limitations of EWD microfluidics, this paper looks at the development of lab-on-chip applications in a hierarchical approach. Diverse applications in biotechnology, for example, will serve as the basis for the requirements for electrowetting devices. These applications drive a set of biomedical fluidic functions required to perform an application, such as cell lysing, molecular separation, or analysis. In turn, each fluidic function encompasses a set of elemental operations, such as transport, mixing, or dispensing. These elemental operations are performed on an elemental set of components, such as electrode arrays, separation columns, or reservoirs. Examples of the incorporation of these principles in complex biomedical applications are described.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications

TL;DR: This critical review summarizes developments in microfluidic platforms that enable the miniaturization, integration, automation and parallelization of (bio-)chemical assays and attempts to provide a selection scheme based on key requirements of different applications and market segments.
Journal ArticleDOI

Microfluidic platforms for lab-on-a-chip applications

TL;DR: These kinds of platforms only that allow performance of a set of microfluidic functions which can be easily combined within a well defined and consistent fabrication technology to implement application specific biochemical assays in an easy, flexible and ideally monolithically way are reviewed.
Journal ArticleDOI

Materials for Microfluidic Chip Fabrication

TL;DR: The evolution of chip materials reflects the two major trends of microfluidic technology: powerful microscale research platforms and low-cost portable analyses.
Journal ArticleDOI

Microdroplets: A sea of applications?

TL;DR: This review provides an overview of methods for generating, controlling and manipulating droplets and discusses key fields of use in which such systems may make a significant impact, with particular emphasis on novel applications in the biological and physical sciences.
Journal ArticleDOI

Development of a digital microfluidic platform for point of care testing

TL;DR: The performance of magnetic bead-based immunoassays (cardiac troponin I) on a digital microfluidic cartridge in less than 8 minutes using whole blood samples and the capability to perform sample preparation for bacterial infectious disease pathogen, methicillin-resistant Staphylococcus aureus and for human genomic DNA using magnetic beads are demonstrated.
References
More filters

Atmospheric chemistry and physics: from air pollution to climate change.

TL;DR: In this article, the authors present a model for the chemistry of the Troposphere of the atmosphere and describe the properties of the Atmospheric Aqueous phase of single aerosol particles.
Book

Atmospheric Chemistry and Physics: From Air Pollution to Climate Change

TL;DR: In this paper, the authors present a model for the chemistry of the Troposphere of the atmosphere and describe the properties of the Atmospheric Aqueous phase of single aerosol particles.
Journal ArticleDOI

Microfluidics: Fluid physics at the nanoliter scale

TL;DR: A review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena as mentioned in this paper.
Journal ArticleDOI

Light-directed, spatially addressable parallel chemical synthesis.

TL;DR: High-density arrays formed by light-directed synthesis are potentially rich sources of chemical diversity for discovering new ligands that bind to biological receptors and for elucidating principles governing molecular interactions.
Related Papers (5)