scispace - formally typeset
Open AccessJournal ArticleDOI

Dynamics and diversity in autophagy mechanisms: lessons from yeast

Reads0
Chats0
TLDR
The discovery of autophagy in yeast and the genetic tractability of this organism have allowed us to identify genes that are responsible for this process, which has led to the explosive growth of this research field seen today.
Abstract
Autophagy is a fundamental function of eukaryotic cells and is well conserved from yeast to humans. The most remarkable feature of autophagy is the synthesis of double membrane-bound compartments that sequester materials to be degraded in lytic compartments, a process that seems to be mechanistically distinct from conventional membrane traffic. The discovery of autophagy in yeast and the genetic tractability of this organism have allowed us to identify genes that are responsible for this process, which has led to the explosive growth of this research field seen today. Analyses of autophagy-related (Atg) proteins have unveiled dynamic and diverse aspects of mechanisms that underlie membrane formation during autophagy.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Lysosomal Proteolysis Inhibition Selectively Disrupts Axonal Transport of Degradative Organelles and Causes an Alzheimer's-Like Axonal Dystrophy

TL;DR: The AD-associated defects in neuronal lysosomal proteolysis are identified as a possible basis for the selective transport abnormalities and highly characteristic pattern of neuritic dystrophy associated with AD.
Journal ArticleDOI

Mechanisms governing autophagosome biogenesis.

TL;DR: This work has shown that autophagosome biogenesis is a highly complex process, in which multiple proteins and lipids from various membrane sources, supported by the formation of membrane contact sites, cooperate with biophysical phenomena, including membrane shaping and liquid–liquid phase separation, to ensure seamless segregation of the autophagic cargo.
Journal ArticleDOI

The Ubiquitin–Proteasome System of Saccharomyces cerevisiae

TL;DR: The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins.
Journal ArticleDOI

Autophagy and Cancer Therapy

TL;DR: Recent research related to autophagy and cancer therapy is discussed with a focus on how these processes may be manipulated to improve cancer therapy.
References
More filters
Journal ArticleDOI

Autophagy fights disease through cellular self-digestion

TL;DR: Understanding autophagy may ultimately allow scientists and clinicians to harness this process for the purpose of improving human health, and to play a role in cell death.
Journal ArticleDOI

TOR signaling in growth and metabolism.

TL;DR: The physiological consequences of mammalianTORC1 dysregulation suggest that inhibitors of mammalian TOR may be useful in the treatment of cancer, cardiovascular disease, autoimmunity, and metabolic disorders.
Journal ArticleDOI

p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy

TL;DR: It is demonstrated that the previously reported aggresome-like induced structures containing ubiquitinated proteins in cytosolic bodies are dependent on p62 for their formation and p62 is required both for the formation and the degradation of polyubiquitin-containing bodies by autophagy.
Journal ArticleDOI

Autophagy: process and function

TL;DR: In this review, the process of autophagy is summarized, and the role of autophileagy is discussed in a process-based manner.
Related Papers (5)