scispace - formally typeset
Journal ArticleDOI

Enhanced Stability and Tunable Photoluminescence in Perovskite CsPbX3 /ZnS Quantum Dot Heterostructure.

TLDR
A novel architecture made of CsPbX3 /ZnS quantum dot heterodimers synthesized via a facile solution-phase process is reported, which shows a strong blue-shift and decrease of recombination lifetime with increasing sulfurization, which is beneficial for charge diffusion in solar cells and photovoltaic applications.
Abstract
All-inorganic perovskite CsPbX3 (X = Cl, Br, I) and related materials are promising candidates for potential solar cells, light emitting diodes, and photodetectors. Here, a novel architecture made of CsPbX3 /ZnS quantum dot heterodimers synthesized via a facile solution-phase process is reported. Microscopic measurements show that CsPbX3 /ZnS heterodimer has high crystalline quality with enhanced chemical stability, as also evidenced by systematic density functional theory based first-principles calculations. Remarkably, depending on the interface structure, ZnS induces either n-type or p-type doping in CsPbX3 and both type-I and type-II heterojunctions can be achieved, leading to rich electronic properties. Photoluminescence measurement results show a strong blue-shift and decrease of recombination lifetime with increasing sulfurization, which is beneficial for charge diffusion in solar cells and photovoltaic applications. These findings are expected to shed light on further understanding and design of novel perovskite heterostructures for stable, tunable optoelectronic devices.

read more

Citations
More filters
Journal ArticleDOI

Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications and Their Optical Properties

TL;DR: In this paper, the authors provide an updated survey of the field of halide perovskite nanocomposite colloidal synthesis, with a main focus on their colloidal synthetic routes to control shape, size and optical properties of the resulting nano-crystals.
Journal ArticleDOI

Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance

TL;DR: The origins of the significantly blue-shifted emission from CsPbBr3 nanocrystals and the synthetic strategies toward fabrication of stable perovskite nanocrystal materials with emission in the red and infrared parts of the optical spectrum are discussed, related to fabrication of mixed cation compounds guided by Goldschmidt tolerance factor considerations.
Journal ArticleDOI

An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs

TL;DR: This review summarizes the mechanisms of intrinsic- and extrinsic-environment-induced decomposition of perovskite quantum dots and some possible solutions to improve the stability of PQDs together with suggestions for further improving the performance of pc-LEDs as well as the device lifetime.
Journal ArticleDOI

State of the Art and Prospects for Halide Perovskite Nanocrystals.

Amrita Dey, +78 more
- 27 Jul 2021 - 
TL;DR: A comprehensive review of metal-halide perovskite nanocrystals can be found in this article, where researchers having expertise in different fields (chemistry, physics, and device engineering) have joined together to provide a state-of-the-art overview and future prospects of metalhalide nanocrystal research.
Journal ArticleDOI

High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots

TL;DR: The developed full-inorganic lead-free Sb-perovskite QDs with high PLQY and stable emission promise great potential for efficient emission candidates.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Projector augmented-wave method

TL;DR: An approach for electronic structure calculations is described that generalizes both the pseudopotential method and the linear augmented-plane-wave (LAPW) method in a natural way and can be used to treat first-row and transition-metal elements with affordable effort and provides access to the full wave function.
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Journal ArticleDOI

Hybrid functionals based on a screened Coulomb potential

TL;DR: In this paper, a new hybrid density functional based on a screened Coulomb potential for the exchange interaction is proposed, which enables fast and accurate hybrid calculations, even of usually difficult metallic systems.
Journal ArticleDOI

Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.

TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Related Papers (5)