scispace - formally typeset
Journal ArticleDOI

Genome instability: a mechanistic view of its causes and consequences

TLDR
The causes and consequences of instability are reviewed with the aim of providing a mechanistic perspective on the origin of genomic instability.
Abstract
Genomic instability in the form of mutations and chromosome rearrangements is usually associated with pathological disorders, and yet it is also crucial for evolution. Two types of elements have a key role in instability leading to rearrangements: those that act in trans to prevent instability--among them are replication, repair and S-phase checkpoint factors--and those that act in cis--chromosomal hotspots of instability such as fragile sites and highly transcribed DNA sequences. Taking these elements as a guide, we review the causes and consequences of instability with the aim of providing a mechanistic perspective on the origin of genomic instability.

read more

Citations
More filters
Journal ArticleDOI

EZH2 Promotes Expansion of Breast Tumor Initiating Cells through Activation of RAF1-β-Catenin Signaling

TL;DR: A mechanism in which EZH2 expression-mediated downregulation of DNA damage repair leads to accumulation of recurrent RAF1 gene amplification in BTICs, which activates p-ERK-β-catenin signaling to promote BTIC expansion is identified.
Journal ArticleDOI

RNase H and Multiple RNA Biogenesis Factors Cooperate to Prevent RNA:DNA Hybrids from Generating Genome Instability

TL;DR: In yeast hybrids naturally form at many loci in wild-type cells, but are removed by two evolutionarily conserved RNase H enzymes, indicating that RNA:DNA hybrids are a potent source for changing genome structure.
Journal ArticleDOI

DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis.

TL;DR: It is shown kataegis can result from AID/APOBEC-catalysed cytidine deamination in the vicinity of DNA breaks, likely through action on single-stranded DNA exposed during resection.
Journal ArticleDOI

DNA confinement in nanochannels: physics and biological applications.

TL;DR: From a physics view these systems are fascinating as they enable probing of single-molecule conformation in environments with dimensions that intersect key physical length-scales in the 1 nm to 100 µm range.
Journal ArticleDOI

Yeast Sen1 helicase protects the genome from transcription-associated instability.

TL;DR: It is proposed that R loop formation is a frequent event during transcription and a key function of Sen1 is to prevent their accumulation and associated genome instability.
References
More filters
Book

DNA Repair and Mutagenesis

TL;DR: Nucleotide excision repair in mammalian cells: genes and proteins Mismatch repair The SOS response and recombinational repair in prokaryotes Mutagenesis in proKaryote Mutagenisation in eukaryotes Other DNA damage tolerance responses in eUKaryotes.
Journal ArticleDOI

Instability and decay of the primary structure of DNA

TL;DR: The spontaneous decay of DNA is likely to be a major factor in mutagenesis, carcinogenesis and ageing, and also sets limits for the recovery of DNA fragments from fossils.
Journal ArticleDOI

DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139

TL;DR: In this paper, a histone H2AX species that has been phosphorylated specifically at serine 139 was found to be a major component of DNA double-stranded break.
Journal ArticleDOI

ATM Phosphorylates Histone H2AX in Response to DNA Double-strand Breaks

TL;DR: The results clearly establish ATM as the major kinase involved in the phosphorylation of H2AX and suggest that ATM is one of the earliest kinases to be activated in the cellular response to double-strand breaks.
Journal ArticleDOI

Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions

TL;DR: A panel of human lung hyperplasias, all of which retained wild-type p53 genes and had no signs of gross chromosomal instability, and found signs of a DNA damage response, including histone H2AX and Chk2 phosphorylation, p53 accumulation, focal staining of p53 binding protein 1 (53BP1) and apoptosis as discussed by the authors.
Related Papers (5)