scispace - formally typeset
Open AccessJournal ArticleDOI

High Performance Thermoelectricity in Earth-Abundant Compounds Based on Natural Mineral Tetrahedrites

Reads0
Chats0
TLDR
In this article, the authors report dimensionless thermoelectric properties of tetrahedrites, the most widespread sulfosalts on Earth, and further show that the natural mineral itself can be used directly as an inexpensive source of energy.
Abstract
Thermoelectric materials can convert waste heat into electricity, potentially improving the effi ciency of energy usage in both industry and everyday life. Unfortunately, known good thermoelectric materials often are comprised of elements that are in low abundance and require careful doping and complex synthesis procedures. Here, we report dimensionless thermoelectric fi gure of merit near unity in compounds of the form Cu 12 − x M x Sb 4 S 13 , where M is a transition metal such as Zn or Fe, for wide ranges of x . The compounds investigated here span the range of compositions of the natural mineral family of tetrahedrites, the most widespread sulfosalts on Earth, and we further show that the natural mineral itself can be used directly as an inexpensive source thermoelectric material. Thermoelectrics comprised of earth-abundant elements will pave the way to many new, low cost thermoelectric energy generation opportunities.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Pressure-induced quenching of planar rattling in Cu 10 Zn 2 Sb 4 S 13 studied by specific heat and x-ray diffraction measurements

TL;DR: In this article, the authors studied the pressure effect on the rattling of tetrahedrite and type-I clathrate by specific heat and x-ray diffraction measurements.
Journal ArticleDOI

Role of annealing atmosphere on the crystal structure and composition of tetrahedrite–tennantite alloy nanoparticles

TL;DR: Tetrahedrite-tennantite (TET-TEN, Cu12Sb4S13-Cu12As 4S13) alloys spanning the entire Sb-As composition range were synthesized using a hot-injection method without any detectable impurities as mentioned in this paper.
Journal ArticleDOI

Correlation between thermal-vibration-induced large displacement of Cu atoms and phase transition in Cu4SnS4: First-principles investigation

TL;DR: In this paper, first-principles calculations and first-parameter molecular dynamics (FPMD) simulations for Cu4SnS4 were performed to clarify the origin of the structural phase transition at 232 K between the high-temperature phase (HP) and low-time temperature phase (LP), which leads to an experimentally measured drastic change in the transport properties of Cu4snS4.
Journal ArticleDOI

Thermoelectric properties of high power factor sulfide NiSbS and Co substitution system Ni1− x Co x SbS

TL;DR: In this article, experimental and theoretical investigations of high power factor sulfide Ni1− x Co x SbS (x = 0, 0.20, and 0.40) are described.
Journal ArticleDOI

The unique evolution of transport bands and thermoelectric performance enhancement by extending low-symmetry phase to high temperature in tin selenide

TL;DR: In this paper, an extension of a low temperature phase with a low-symmetry lattice structure, which has excellent electrical properties and low thermal conductivity, enhances the thermoelectric performance via a sulfur solid solution.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Journal ArticleDOI

Ab initio molecular dynamics for liquid metals.

TL;DR: In this paper, the authors present an ab initio quantum-mechanical molecular-dynamics calculations based on the calculation of the electronic ground state and of the Hellmann-Feynman forces in the local density approximation.
Journal ArticleDOI

Thin-film thermoelectric devices with high room-temperature figures of merit

TL;DR: Th thin-film thermoelectric materials are reported that demonstrate a significant enhancement in ZT at 300 K, compared to state-of-the-art bulk Bi2Te3 alloys, and the combination of performance, power density and speed achieved in these materials will lead to diverse technological applications.
Journal ArticleDOI

High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys

TL;DR: Electrical transport measurements, coupled with microstructure studies and modeling, show that the ZT improvement is the result of low thermal conductivity caused by the increased phonon scattering by grain boundaries and defects, which makes these materials useful for cooling and power generation.
Related Papers (5)