scispace - formally typeset
Open AccessJournal ArticleDOI

Influence of spring and autumn phenological transitions on forest ecosystem productivity

TLDR
Investigation of relationships between phenology and productivity in temperate and boreal forests finds the productivity of evergreen needleleaf forests is less sensitive to phenology than is productivity of deciduous broadleaf forests, which has implications for how climate change may drive shifts in competition within mixed-species stands.
Abstract
We use eddy covariance measurements of net ecosystem productivity (NEP) from 21 FLUXNET sites (153 site-years of data) to investigate relationships between phenology and productivity (in terms of both NEP and gross ecosystem photosynthesis, GEP) in temperate and boreal forests. Results are used to evaluate the plausibility of four different conceptual models. Phenological indicators were derived from the eddy covariance time series, and from remote sensing and models. We examine spatial patterns (across sites) and temporal patterns (across years); an important conclusion is that it is likely that neither of these accurately represents how productivity will respond to future phenological shifts resulting from ongoing climate change. In spring and autumn, increased GEP resulting from an 'extra' day tends to be offset by concurrent, but smaller, increases in ecosystem respiration, and thus the effect on NEP is still positive. Spring productivity anomalies appear to have carry-over effects that translate to productivity anomalies in the following autumn, but it is not clear that these result directly from phenological anomalies. Finally, the productivity of evergreen needleleaf forests is less sensitive to phenology than is productivity of deciduous broadleaf forests. This has implications for how climate change may drive shifts in competition within mixed-species stands.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Beyond the Bioclimatic Law: Geographic adaptation patterns of temperate plant phenology

TL;DR: In this article, the authors outline a methodology for bridging this knowledge gap through delineating geographic adaption patterns using common garden and cloned plant phenology, and identify typical geographic adaptation patterns in both spring and autumn phenology of many temperate tree species.
Journal ArticleDOI

Variation in evergreen and deciduous species leaf phenology in Assam, India

TL;DR: Although the climate of the study area supports evergreen forests, the strategies of the deciduous species such as faster leaf recruitment rate, longer leaf recruitment time, faster shoot elongation rate during favorable growing season and short leaf life span perhaps allows them to coexist with evergreen species that have the liberty to photosynthesize round the year.
Journal ArticleDOI

Determining the relative importance of climatic drivers on spring phenology in grassland ecosystems of semi-arid areas.

TL;DR: The research reveals that spring precipitation has stronger causal connectivity with the SOS than other climatic factors over different grassland ecosystem types and the asymmetric Gaussian function is better in reducing noise of NDVI time series than the double logistic function within the study area.
Journal ArticleDOI

NIRv and SIF better estimate phenology than NDVI and EVI: Effects of spring and autumn phenology on ecosystem production of planted forests

TL;DR: In this paper , the authors explored the consistency in phenological metrics derived from both remote sensing approaches (NDVI, EVI, NIRv, and SIF) and flux tower GPP at six plantations (two broadleaf forests (BF) and four coniferous forests (CF)) in eastern China over the period 2006-2020.
References
More filters
Journal ArticleDOI

Increased plant growth in the northern high latitudes from 1981 to 1991

TL;DR: In this paper, the authors present evidence from satellite data that the photosynthetic activity of terrestrial vegetation increased from 1981 to 1991 in a manner that is suggestive of an increase in plant growth associated with a lengthening of the active growing season.
Journal ArticleDOI

Shifting plant phenology in response to global change

TL;DR: Recent advances in several fields that have enabled scaling between species responses to recent climatic changes and shifts in ecosystem productivity are discussed, with implications for global carbon cycling.
Related Papers (5)