scispace - formally typeset
Open AccessJournal ArticleDOI

Influence of spring and autumn phenological transitions on forest ecosystem productivity

TLDR
Investigation of relationships between phenology and productivity in temperate and boreal forests finds the productivity of evergreen needleleaf forests is less sensitive to phenology than is productivity of deciduous broadleaf forests, which has implications for how climate change may drive shifts in competition within mixed-species stands.
Abstract
We use eddy covariance measurements of net ecosystem productivity (NEP) from 21 FLUXNET sites (153 site-years of data) to investigate relationships between phenology and productivity (in terms of both NEP and gross ecosystem photosynthesis, GEP) in temperate and boreal forests. Results are used to evaluate the plausibility of four different conceptual models. Phenological indicators were derived from the eddy covariance time series, and from remote sensing and models. We examine spatial patterns (across sites) and temporal patterns (across years); an important conclusion is that it is likely that neither of these accurately represents how productivity will respond to future phenological shifts resulting from ongoing climate change. In spring and autumn, increased GEP resulting from an 'extra' day tends to be offset by concurrent, but smaller, increases in ecosystem respiration, and thus the effect on NEP is still positive. Spring productivity anomalies appear to have carry-over effects that translate to productivity anomalies in the following autumn, but it is not clear that these result directly from phenological anomalies. Finally, the productivity of evergreen needleleaf forests is less sensitive to phenology than is productivity of deciduous broadleaf forests. This has implications for how climate change may drive shifts in competition within mixed-species stands.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Plants and climate change: complexities and surprises.

TL;DR: It is argued that inconclusive, unexpected, or counter-intuitive results should be embraced in order to understand apparent disconnects between theory, prediction, and observation, and that the need for ecologists to conduct community-level experiments in systems that replicate multiple aspects of ACC is highlighted.

Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau.

TL;DR: In this paper, the authors used satellite derived NDVI (Normalized Difference Vegetation Index) data to explore the spatio-temporal changes in the timing of spring vegetation green-up in the Qinghai-Xizang (Tibetan) Plateau from 1982 to 2006 and to characterize their relationship with elevation and temperature using concurrent satellite and climate data sets.
Journal ArticleDOI

Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery.

TL;DR: A series of datasets, together consisting of almost 750 years of observations, characterizing vegetation phenology in diverse ecosystems across North America can be used for phenological model validation and development, evaluation of satellite remote sensing data products, benchmarking earth system models, and studies of climate change impacts on terrestrial ecosystems.
Journal ArticleDOI

The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange

TL;DR: In this paper, the seasonal cycle of photosynthesis as estimated from satellite fluorescence retrievals at wavelengths surrounding the 740nm emission feature was examined, and the seasonality of absorbed photosynthetically-active radiation (APAR) derived with reflectances from the MODerate-resolution Imaging Spectroradiometer (MODIS).
Journal ArticleDOI

Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011.

TL;DR: The springtime extension of the photosynthetic and potential growing seasons has apparently stimulated earlier and stronger net CO(2) uptake by northern ecosystems, while the autumnal extension is associated with an earlier net release of CO( 2) to the atmosphere.
References
More filters
Journal ArticleDOI

Increased plant growth in the northern high latitudes from 1981 to 1991

TL;DR: In this paper, the authors present evidence from satellite data that the photosynthetic activity of terrestrial vegetation increased from 1981 to 1991 in a manner that is suggestive of an increase in plant growth associated with a lengthening of the active growing season.
Journal ArticleDOI

Shifting plant phenology in response to global change

TL;DR: Recent advances in several fields that have enabled scaling between species responses to recent climatic changes and shifts in ecosystem productivity are discussed, with implications for global carbon cycling.
Related Papers (5)