scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Mechanical tearing of graphene on an oxidizing metal surface

17 Nov 2015-Nanotechnology (IOP Publishing)-Vol. 26, Iss: 49, pp 495701-495701
TL;DR: It is demonstrated from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp(3)-type defects, consistent with a mechanical tearing process that splits graphene into small polycrystalline domains.
Abstract: Graphene, the thinnest possible anticorrosion and gas-permeation barrier, is poised to transform the protective coatings industry for a variety of surface applications. In this work, we have studied the structural changes of graphene when the underlying copper surface undergoes oxidation upon heating. Single-layer graphene directly grown on a copper surface by chemical vapour deposition was annealed under ambient atmosphere conditions up to 400 °C. The onset temperature of the surface oxidation of copper is found to be higher for graphene-coated foils. Parallel arrays of graphene nanoripples are a ubiquitous feature of pristine graphene on copper, and we demonstrate that these form crucial sites for the onset of the oxidation of copper, particularly for ∼0.3-0.4 μm ripple widths. In these regions, the oxidation proceeds along the length of the nanoripples, resulting in the formation of parallel stripes of oxidized copper regions. We demonstrate from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp(3)-type defects. This observation is consistent with a mechanical tearing process that splits graphene into small polycrystalline domains. The size of these is estimated to be sub-50 nm.
Citations
More filters
Journal ArticleDOI
TL;DR: For graphene wet-transferred to three kinds of substrates: copper, poly-dimethylsiloxane, and SiO2/Si, the Raman shifts can largely be modeled with lattice expansion and anharmonic contributions, and the data suggests limited interfacial interaction with the substrate.
Abstract: The temperature-dependent thermal expansion coefficient of graphene is estimated for as-grown chemical vapor deposited graphene using temperature-dependent Raman spectroscopy. For as-grown graphene on copper, the extent of thermal expansion mismatch between substrate and the graphene layer is significant across the entire measured temperature interval, T = 90–300 K. This mismatch induces lattice strain in graphene. However, graphene grown on copper substrates has a unique morphology in the form of quasi-periodic nanoripples. This crucially influences the profile of the strain in the graphene membrane, which is uniaxial. An estimate of the thermal expansion coefficient of graphene is obtained after consideration of this strain profile and after incorporating temperature-dependent Gruneisen parameter corrections. The value of , is found to be negative (average value, −3.75 × 10−6 K−1) for the entire temperature range and it approaches close to zero for T < 150 K. For graphene wet-transferred to three kinds of substrates: copper, poly-dimethylsiloxane, and SiO2/Si, the Raman shifts can largely be modeled with lattice expansion and anharmonic contributions, and the data suggests limited interfacial interaction with the substrate.

49 citations

Journal ArticleDOI
TL;DR: In this article, the effects of self-assembled monolayers with different anchoring groups and chain lengths regarding wettability, corrosion resistance and homogeneity of the layer were studied in detail.

40 citations

Journal ArticleDOI
TL;DR: In this article, a review of the mechanisms, influencing factors, and inhibition strategies of the CPA of GFs and GNCs are highlighted from the point of view of corrosion science to address the bottlenecks and challenges for future research and potential applications of graphene for corrosion protection.

32 citations

Journal ArticleDOI
TL;DR: In this article, the effects of grain boundaries (GBs) on the failure of graphene layers to provide adequate protection were investigated in detail by combining graphene transfer techniques, computation, and anti-corrosion measurements.
Abstract: Graphene produced by chemical vapor deposition (CVD) methods has been considered as a promising corrosion prevention layer because of its exceptional structure and impermeability. However, the anti-corrosion performance and the failure mechanism are still controversial. In this study, graphene layers with different quality levels, crystallite sizes, and layer numbers were prepared on the surface of Cu by a CVD process. The effects of grain boundaries (GBs) on the failure of graphene layers to provide adequate protection were investigated in detail by combining graphene transfer techniques, computation, and anti-corrosion measurements. Our results reveal that corrosion rates decrease marginally upon the increase of graphene layer number, and this rather weak dependence on thickness likely arises from the aligned nature of the GBs in CVD-grown few-layer graphene. This problem can potentially be overcome by layer-by-layer graphene transfer technique, in which corrosion is found to be arrested locally when transferred graphene is present on top of the as-grown graphene. However, this advantage is not reflected in corrosion studies performed on large-scale samples, where cracks or imperfect interfaces could offset the advantages of GB misalignment. With improvements in technology, the layer-by-layer assembly technique could be used to develop an effective anti-corrosion barrier.

31 citations

Journal ArticleDOI
TL;DR: In this paper, the mechanism of 2D materials in corrosion mitigation and passivation related to physicochemical properties and variations, such as defects, out-of-plane deformations, interfacial states, temporal and thickness variations, etc.
Abstract: Metal deterioration via corrosion is a ubiquitous and persistent problem. Angstrom-scale, atomically thin 2D materials are promising candidates for effective, robust, and economical corrosion passivation coatings due to their ultimate thinness and excellent mechanical and electrical properties. This review focuses on elucidating the mechanism of 2D materials in corrosion mitigation and passivation related to their physicochemical properties and variations, such as defects, out-of-plane deformations, interfacial states, temporal and thickness variations, etc. In addition, this review discusses recent progress and developments of 2D material coatings for corrosion mitigation and passivation as well as the significant challenges to overcome in the future.

21 citations

References
More filters
Journal ArticleDOI
Changgu Lee1, Xiaoding Wei1, Jeffrey W. Kysar1, James Hone1, James Hone2 
18 Jul 2008-Science
TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract: We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

18,008 citations


"Mechanical tearing of graphene on a..." refers background in this paper

  • ...Graphene is known for its robust mechanical properties, with a Young’s modulus of about ∼1 TPa [13, 14], and theoretical calcula-...

    [...]

  • ...Graphene is known for its robust mechanical properties, with a Young’s modulus of about ∼1 TPa [13, 14], and theoretical calculations have shown that pristine graphene lattice can withstand very large (up to 20...

    [...]

Journal ArticleDOI
TL;DR: In this paper, a model and theoretical understanding of the Raman spectra in disordered and amorphous carbon is given, and the nature of the G and D vibration modes in graphite is analyzed in terms of the resonant excitation of \ensuremath{\pi} states and the long-range polarizability of the long range bonding.
Abstract: The model and theoretical understanding of the Raman spectra in disordered and amorphous carbon are given. The nature of the G and D vibration modes in graphite is analyzed in terms of the resonant excitation of \ensuremath{\pi} states and the long-range polarizability of \ensuremath{\pi} bonding. Visible Raman data on disordered, amorphous, and diamondlike carbon are classified in a three-stage model to show the factors that control the position, intensity, and widths of the G and D peaks. It is shown that the visible Raman spectra depend formally on the configuration of the ${\mathrm{sp}}^{2}$ sites in ${\mathrm{sp}}^{2}$-bonded clusters. In cases where the ${\mathrm{sp}}^{2}$ clustering is controlled by the ${\mathrm{sp}}^{3}$ fraction, such as in as-deposited tetrahedral amorphous carbon (ta-C) or hydrogenated amorphous carbon (a-C:H) films, the visible Raman parameters can be used to derive the ${\mathrm{sp}}^{3}$ fraction.

12,593 citations


"Mechanical tearing of graphene on a..." refers background or methods in this paper

  • ...The evolution of the Raman spectra of defected graphene has previously been considered in a three-stage model [26] involving changes from graphitic to nanocrystal-...

    [...]

  • ...Instead it represents the formation of defects on the graphene lattice or the formation of amorphous carbon alongside graphene [26]....

    [...]

Journal ArticleDOI
TL;DR: The state of the art, future directions and open questions in Raman spectroscopy of graphene are reviewed, and essential physical processes whose importance has only recently been recognized are described.
Abstract: Raman spectroscopy is an integral part of graphene research. It is used to determine the number and orientation of layers, the quality and types of edge, and the effects of perturbations, such as electric and magnetic fields, strain, doping, disorder and functional groups. This, in turn, provides insight into all sp(2)-bonded carbon allotropes, because graphene is their fundamental building block. Here we review the state of the art, future directions and open questions in Raman spectroscopy of graphene. We describe essential physical processes whose importance has only recently been recognized, such as the various types of resonance at play, and the role of quantum interference. We update all basic concepts and notations, and propose a terminology that is able to describe any result in literature. We finally highlight the potential of Raman spectroscopy for layered materials other than graphene.

5,673 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the first-order and double resonance Raman scattering mechanisms in graphene, which give rise to the most prominent Raman features and give special emphasis to the possibility of using Raman spectroscopy to distinguish a monolayer from few-layer graphene stacked in the Bernal configuration.

4,945 citations


"Mechanical tearing of graphene on a..." refers background in this paper

  • ...and sub-domain grain boundaries of CVD graphene formed during the growth process [31]....

    [...]

Journal ArticleDOI
TL;DR: It is found that the ratio between the D and G peak intensities, for a given defect density, strongly depends on the laser excitation energy, and a simple equation for the determination of the point defect density in graphene via Raman spectroscopy is presented.
Abstract: We present a Raman study of Ar(+)-bombarded graphene samples with increasing ion doses. This allows us to have a controlled, increasing, amount of defects. We find that the ratio between the D and G peak intensities for a given defect density strongly depends on the laser excitation energy. We quantify this effect and present a simple equation for the determination of the point defect density in graphene via Raman spectroscopy for any visible excitation energy. We note that, for all excitations, the D to G intensity ratio reaches a maximum for an inter-defect distance ~3nm. Thus, a given ratio could correspond to two different defect densities, above or below the maximum. The analysis of the G peak width and its dispersion with excitation energy solves this ambiguity.

2,558 citations