scispace - formally typeset
Open AccessJournal ArticleDOI

Mechanisms of Acquired Crizotinib Resistance in ALK-Rearranged Lung Cancers

Reads0
Chats0
TLDR
Findings from a series of lung cancer patients with acquired resistance to the ALK TKI crizotinib reinforce the need to tailor therapeutic strategies to the specific underlying drug resistance mechanisms in the tumors to improve clinical outcomes.
Abstract
Most anaplastic lymphoma kinase (ALK)–positive non–small cell lung cancers (NSCLCs) are highly responsive to treatment with ALK tyrosine kinase inhibitors (TKIs). However, patients with these cancers invariably relapse, typically within 1 year, because of the development of drug resistance. Herein, we report findings from a series of lung cancer patients (n = 18) with acquired resistance to the ALK TKI crizotinib. In about one-fourth of patients, we identified a diverse array of secondary mutations distributed throughout the ALK TK domain, including new resistance mutations located in the solvent-exposed region of the adenosine triphosphate–binding pocket, as well as amplification of the ALK fusion gene. Next-generation ALK inhibitors, developed to overcome crizotinib resistance, had differing potencies against specific resistance mutations. In addition to secondary ALK mutations and ALK gene amplification, we also identified aberrant activation of other kinases including marked amplification of KIT and increased autophosphorylation of epidermal growth factor receptor in drug-resistant tumors from patients. In a subset of patients, we found evidence of multiple resistance mechanisms developing simultaneously. These results highlight the unique features of TKI resistance in ALK-positive NSCLCs and provide the rationale for pursuing combinatorial therapeutics that are tailored to the precise resistance mechanisms identified in patients who relapse on crizotinib treatment.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Efficacy of Larotrectinib in TRK Fusion–Positive Cancers in Adults and Children

TL;DR: Larotrectinib had marked and durable antitumor activity in patients with TRK fusion–positive cancer, regardless of the age of the patient or of the tumor type.
Journal ArticleDOI

Non-small-cell lung cancers: a heterogeneous set of diseases

TL;DR: An impressive list of potential therapeutic targets was unveiled, drastically altering the clinical evaluation and treatment of patients for non-small-cell lung cancers, including immunotherapy.
References
More filters
Journal ArticleDOI

Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer

TL;DR: It is shown that a small inversion within chromosome 2p results in the formation of a fusion gene comprising portions of the echinoderm microtubule-associated protein-like 4 (EML4) gene and the anaplastic lymphoma kinase (ALK) gene in non-small-cell lung cancer (NSCLC) cells.
Journal ArticleDOI

MET Amplification Leads to Gefitinib Resistance in Lung Cancer by Activating ERBB3 Signaling

TL;DR: It is proposed that MET amplification may promote drug resistance in other ERBB-driven cancers as well after it was found that amplification of MET causes gefitinib resistance by driving ERBB3 (HER3)–dependent activation of PI3K, a pathway thought to be specific to EGFR/ERBB family receptors.
Journal ArticleDOI

Genotypic and Histological Evolution of Lung Cancers Acquiring Resistance to EGFR Inhibitors

TL;DR: Detailed genetic and histological analysis of 37 patients with drug-resistant non–small cell lung cancers carrying EGFR mutations provides new insights into the shifting sands of drug resistance evolution in lung cancers and suggests that serial biopsies may be essential in the quest to reverse or even prevent the development ofdrug resistance.
Related Papers (5)