scispace - formally typeset
Open AccessJournal ArticleDOI

Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease

TLDR
Evidence that mitophagy is impaired in the hippocampus of AD patients, in induced pluripotent stem cell-derived human AD neurons, and in animal AD models is provided, suggesting that impaired removal of defective mitochondria is a pivotal event in AD pathogenesis and thatMitophagy represents a potential therapeutic intervention.
Abstract
Accumulation of damaged mitochondria is a hallmark of aging and age-related neurodegeneration, including Alzheimer's disease (AD). The molecular mechanisms of impaired mitochondrial homeostasis in AD are being investigated. Here we provide evidence that mitophagy is impaired in the hippocampus of AD patients, in induced pluripotent stem cell-derived human AD neurons, and in animal AD models. In both amyloid-β (Aβ) and tau Caenorhabditis elegans models of AD, mitophagy stimulation (through NAD+ supplementation, urolithin A, and actinonin) reverses memory impairment through PINK-1 (PTEN-induced kinase-1)-, PDR-1 (Parkinson's disease-related-1; parkin)-, or DCT-1 (DAF-16/FOXO-controlled germline-tumor affecting-1)-dependent pathways. Mitophagy diminishes insoluble Aβ1-42 and Aβ1-40 and prevents cognitive impairment in an APP/PS1 mouse model through microglial phagocytosis of extracellular Aβ plaques and suppression of neuroinflammation. Mitophagy enhancement abolishes AD-related tau hyperphosphorylation in human neuronal cells and reverses memory impairment in transgenic tau nematodes and mice. Our findings suggest that impaired removal of defective mitochondria is a pivotal event in AD pathogenesis and that mitophagy represents a potential therapeutic intervention.

read more

Citations
More filters
Journal ArticleDOI

Mitophagy in human diseases

TL;DR: In this article, the authors summarized the key selective mitochondrial autophagy pathways and their role in prevalent chronic human diseases and highlight the potential use of specific interventions, such as pharmacological or dietary interventions that restore mitophagy homeostasis and facilitate the elimination of irreversibly damaged mitochondria.
Journal ArticleDOI

Impairment of the autophagy–lysosomal pathway in Alzheimer's diseases: Pathogenic mechanisms and therapeutic potential

TL;DR: In this paper , the authors summarized the recent genetic, pathological and experimental studies regarding the impairment of the autophagy-lysosomal pathway in Alzheimer's disease and discussed potential therapeutic strategies and small molecules that target the auto-pathway for AD treatment.
Journal ArticleDOI

Bioenergetics and translational metabolism: implications for genetics, physiology and precision medicine

TL;DR: It is proposed that a personalized medicine approach that integrates metabolism and bioenergetics with physiologic parameters is central for understanding the pathophysiology of diseases with a metabolic etiology.
Journal ArticleDOI

Magnolol alleviates Alzheimer's disease-like pathology in transgenic C. elegans by promoting microglia phagocytosis and the degradation of beta-amyloid through activation of PPAR-γ.

TL;DR: MG dose-dependently reduces Aβ deposition, toxicity and memory impairment caused by Aβ in transgenic C. elegans and the underlying mechanism is the reduction of inflammation and promotion of phagocytosis and degradation of Aβ, which is dependent on PPAR-γ.
Journal ArticleDOI

Glycine and N‐acetylcysteine (GlyNAC) supplementation in older adults improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, insulin resistance, endothelial dysfunction, genotoxicity, muscle strength, and cognition: Results of a pilot clinical trial

TL;DR: In this paper, the effect of GlyNAC supplementation and withdrawal on intracellular GSH concentrations, OxS, MFO, inflammation, endothelial function, genotoxicity, muscle and glucose metabolism, body composition, strength, and cognition of older adults.
References
More filters
Journal ArticleDOI

The genetics of caenorhabditis elegans

TL;DR: In this paper, the authors describe methods for the isolation, complementation and mapping of mutants of Caenorhabditis elegans, a small free-living nematode worm.
Journal ArticleDOI

A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays.

TL;DR: A screening window coefficient, called "Z- factor," is defined, which is reflective of both the assay signal dynamic range and the data variation associated with the signal measurements, and therefore is suitable for assay quality assessment.
Journal Article

The genetics of Caenorhabditis elegans.

Daniel S. Brenner, +1 more
- 29 Apr 1974 - 
TL;DR: Estimates of the induced mutation frequency of both the visible mutants and X chromosome lethals suggests that, just as in Drosophila, the genetic units in C. elegans are large.
Journal ArticleDOI

Alzheimer's Disease Is a Synaptic Failure

TL;DR: Mounting evidence suggests that this syndrome begins with subtle alterations of hippocampal synaptic efficacy prior to frank neuronal degeneration, and that the synaptic dysfunction is caused by diffusible oligomeric assemblies of the amyloid β protein.
Journal ArticleDOI

Triple-Transgenic Model of Alzheimer's Disease with Plaques and Tangles: Intracellular Aβ and Synaptic Dysfunction

TL;DR: The recapitulation of salient features of AD in these mice clarifies the relationships between Abeta, synaptic dysfunction, and tangles and provides a valuable model for evaluating potential AD therapeutics as the impact on both lesions can be assessed.
Related Papers (5)