scispace - formally typeset
Open AccessJournal ArticleDOI

Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin.

TLDR
It is proposed that the capacity of this mouse Polycomb homolog to associate with the inactive X chromosome, or any other region of chromatin, depends not only on its chromodomain but also on the combination of histone modifications and RNA molecules present at its target sites.
Abstract
The chromodomain (CD) of the Drosophila Polycomb protein exhibits preferential binding affinity for histone H3 when trimethylated at lysine 27. Here we have investigated the five mouse Polycomb homologs known as Cbx2, Cbx4, Cbx6, Cbx7, and Cbx8. Despite a high degree of conservation, the Cbx chromodomains display significant differences in binding preferences. Not all CDs bind preferentially to K27me3; rather, some display affinity towards both histone H3 trimethylated at K9 and H3K27me3, and one CD prefers K9me3. Cbx7, in particular, displays strong affinity for both H3K9me3 and H3K27me3 and is developmentally regulated in its association with chromatin. Cbx7 associates with facultative heterochromatin and, more specifically, is enriched on the inactive X chromosome. Finally, we find that, in vitro, the chromodomain of Cbx7 can bind RNA and that, in vivo, the interaction of Cbx7 with chromatin, and the inactive X chromosome in particular, depends partly on its association with RNA. We propose that the capacity of this mouse Polycomb homolog to associate with the inactive X chromosome, or any other region of chromatin, depends not only on its chromodomain but also on the combination of histone modifications and RNA molecules present at its target sites.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The epigenomics of cancer.

TL;DR: Recent advances in understanding how epigenetic alterations participate in the earliest stages of neoplasia, including stem/precursor cell contributions, are reviewed and the growing implications of these advances for strategies to control cancer are discussed.
Journal ArticleDOI

Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs

TL;DR: The transcriptional landscape of the four human HOX loci is characterized at five base pair resolution in 11 anatomic sites and 231 HOX ncRNAs are identified that extend known transcribed regions by more than 30 kilobases, suggesting transcription of ncRNA may demarcate chromosomal domains of gene silencing at a distance.
Journal ArticleDOI

Molecular Mechanisms of Long Noncoding RNAs

TL;DR: These archetypes of lncRNA function may be a useful framework to consider how lncRNAs acquire properties as biological signal transducers and hint at their possible origins in evolution.
Journal ArticleDOI

Genome Regulation by Long Noncoding RNAs

TL;DR: Long noncoding RNAs (lncRNAs) as discussed by the authors form extensive networks of ribonucleoprotein (RNP) complexes with numerous chromatin regulators and then target these enzymatic activities to appropriate locations in the genome.
Journal ArticleDOI

Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression

TL;DR: A model in which some lincRNAs guide chromatin-modifying complexes to specific genomic loci to regulate gene expression is proposed, and it is shown that siRNA-mediated depletion of certain linc RNAs associated with PRC2 leads to changes in gene expression.
References
More filters
Journal ArticleDOI

Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins.

TL;DR: It is shown that mammalian methyltransferases that selectively methylate histone H3 on lysine 9 (Suv39h HMTases) generate a binding site for HP1 proteins—a family of heterochromatic adaptor molecules implicated in both gene silencing and supra-nucleosomal chromatin structure.
Journal ArticleDOI

Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain.

TL;DR: A stepwise model for the formation of a transcriptionally silent heterochromatin is provided: SUV39H1 places a ‘methyl marker’ on histone H3, which is then recognized by HP1 through its chromo domain, which may also explain the stable inheritance of theheterochromatic state.
Journal ArticleDOI

Role of histone H3 lysine 27 methylation in X inactivation.

TL;DR: It is demonstrated that transient recruitment of the Eed-Ezh2 complex to the inactive X chromosome (Xi) occurs during initiation of X inactivation in both extraembryonic and embryonic cells and is accompanied by H3-K27 methylation.
Journal ArticleDOI

Epigenetic Regulation of Cellular Memory by the Polycomb and Trithorax Group Proteins

TL;DR: Current ideas on the protein and DNA components of this transcriptional memory system are reviewed and how they interact dynamically with each other to orchestrate cellular memory for several hundred genes are reviewed.
Journal ArticleDOI

Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains

TL;DR: It is shown that the chromodomain proteins Polycomb (Pc) and HP1 (heterochromatin protein 1) are highly discriminatory for binding to these sites in vivo and in vitro, and a role for their Chromodomains in both target site binding and discrimination is indicated.
Related Papers (5)