scispace - formally typeset
Open AccessJournal ArticleDOI

Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression

TLDR
A model in which some lincRNAs guide chromatin-modifying complexes to specific genomic loci to regulate gene expression is proposed, and it is shown that siRNA-mediated depletion of certain linc RNAs associated with PRC2 leads to changes in gene expression.
Abstract
We recently showed that the mammalian genome encodes >1,000 large intergenic noncoding (linc)RNAs that are clearly conserved across mammals and, thus, functional. Gene expression patterns have implicated these lincRNAs in diverse biological processes, including cell-cycle regulation, immune surveillance, and embryonic stem cell pluripotency. However, the mechanism by which these lincRNAs function is unknown. Here, we expand the catalog of human lincRNAs to ≈3,300 by analyzing chromatin-state maps of various human cell types. Inspired by the observation that the well-characterized lincRNA HOTAIR binds the polycomb repressive complex (PRC)2, we tested whether many lincRNAs are physically associated with PRC2. Remarkably, we observe that ≈20% of lincRNAs expressed in various cell types are bound by PRC2, and that additional lincRNAs are bound by other chromatin-modifying complexes. Also, we show that siRNA-mediated depletion of certain lincRNAs associated with PRC2 leads to changes in gene expression, and that the up-regulated genes are enriched for those normally silenced by PRC2. We propose a model in which some lincRNAs guide chromatin-modifying complexes to specific genomic loci to regulate gene expression.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language?

TL;DR: It is proposed that this "competing endogenous RNA" (ceRNA) activity forms a large-scale regulatory network across the transcriptome, greatly expanding the functional genetic information in the human genome and playing important roles in pathological conditions, such as cancer.
Journal ArticleDOI

Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis

TL;DR: It is shown that lincRNAs in the HOX loci become systematically dysregulated during breast cancer progression, indicating that l incRNAs have active roles in modulating the cancer epigenome and may be important targets for cancer diagnosis and therapy.
Journal ArticleDOI

Molecular Mechanisms of Long Noncoding RNAs

TL;DR: These archetypes of lncRNA function may be a useful framework to consider how lncRNAs acquire properties as biological signal transducers and hint at their possible origins in evolution.
Journal ArticleDOI

starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data

TL;DR: This study developed starBase v2.0, which has been updated to provide the most comprehensive CLIP-Seq experimentally supported miRNA-mRNA and mi RNA-lncRNA interaction networks to date, and developed miRFunction and ceRNAFunction web servers to predict the function of miRNAs and other ncRNAs from themiRNA-mediated regulatory networks.
References
More filters
Journal ArticleDOI

High-resolution profiling of histone methylations in the human genome.

TL;DR: High-resolution maps for the genome-wide distribution of 20 histone lysine and arginine methylations as well as histone variant H2A.Z, RNA polymerase II, and the insulator binding protein CTCF across the human genome using the Solexa 1G sequencing technology are generated.
Journal ArticleDOI

Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project

Ewan Birney, +320 more
- 14 Jun 2007 - 
TL;DR: Functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project are reported, providing convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts.
Journal ArticleDOI

Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs

TL;DR: The transcriptional landscape of the four human HOX loci is characterized at five base pair resolution in 11 anatomic sites and 231 HOX ncRNAs are identified that extend known transcribed regions by more than 30 kilobases, suggesting transcription of ncRNA may demarcate chromosomal domains of gene silencing at a distance.
Related Papers (5)