scispace - formally typeset
Journal ArticleDOI

Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors.

TLDR
Here it is explained why In-containing (Al,In,Ga)N bulk films exhibit a defect-insensitive emission probability, and it is concluded that localizing valence states associated with atomic condensates of In–N preferentially capture holes, which have a positive charge similar to positrons.
Abstract
Group-III-nitride semiconductors have shown enormous potential as light sources for full-colour displays, optical storage and solid-state lighting. Remarkably, InGaN blue- and green-light-emitting diodes (LEDs) emit brilliant light although the threading dislocation density generated due to lattice mismatch is six orders of magnitude higher than that in conventional LEDs. Here we explain why In-containing (Al,In,Ga)N bulk films exhibit a defect-insensitive emission probability. From the extremely short positron diffusion lengths (<4 nm) and short radiative lifetimes of excitonic emissions, we conclude that localizing valence states associated with atomic condensates of In-N preferentially capture holes, which have a positive charge similar to positrons. The holes form localized excitons to emit the light, although some of the excitons recombine at non-radiative centres. The enterprising use of atomically inhomogeneous crystals is proposed for future innovation in light emitters even when using defective crystals.

read more

Citations
More filters
Journal ArticleDOI

Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties

TL;DR: In this article, the most recent advances in the synthesis and application of phosphors for white light-emitting diodes (pc-WLEDs) with emphasis specifically on: (a) principles to tune the excitation and emission spectra of the phosphors: prediction according to crystal field theory, and structural chemistry characteristics (e.g. covalence of chemical bonds, electronegativity, and polarization effects of element); (b) pc-W LEDs with phosphors excited by blue-LED chips: phosphor characteristics, structure, and activated ions
Journal ArticleDOI

Auger recombination in InGaN measured by photoluminescence

TL;DR: In this paper, the Auger recombination coefficient in quasi-bulk InxGa1−xN (x∼9%−15%) layers grown on GaN (0001) is measured by a photoluminescence technique.
Journal ArticleDOI

Efficiency droop in nitride-based light-emitting diodes

TL;DR: In this paper, the authors provide a snapshot of the current state of droop research, reviews currently discussed droop mechanisms, contextualizes them, and proposes a simple yet unified model for the LED efficiency droop.
Journal ArticleDOI

LEDs for Solid-State Lighting: Performance Challenges and Recent Advances

TL;DR: In this paper, the authors review LED performance targets that are needed to achieve these benefits and highlight some of the remaining technical challenges, and describe recent advances in LED materials and novel device concepts that show promise for realizing the full potential of LED-based white lighting.
Journal ArticleDOI

Electrically pumped continuous-wave III–V quantum dot lasers on silicon

TL;DR: In this paper, the authors demonstrate continuous-wave InAs/GaAs quantum dot lasers directly grown on silicon substrates with a low threshold current density of 62.5 cm−2, a room-temperature output power exceeding 105mW and operation up to 120°C.
References
More filters
Book

The Blue Laser Diode: GaN based Light Emitters and Lasers

TL;DR: The physics of gallium nitrides and related compounds GaN growth p-Type GaN obtained by electron beam irradiation n-Type GAN p-type GaN InGaN Zn and Si co-doped GaN double-heterostructure blue and blue green LEDs inGaN single-quantum-well structure LEDs room-temperature pulsed operation of laser diodes emission mechanisms of LEDs and LDs room temperature CW operation of InGAN MQW LDs latest results as discussed by the authors.
Journal ArticleDOI

First-principles calculations for defects and impurities: Applications to III-nitrides

TL;DR: In this paper, the authors describe the state-of-the-art computational methodology for calculating the structure and energetics of point defects and impurities in semiconductors and pay particular attention to computational aspects which are unique to defects or impurities, such as how to deal with charge states and how to describe and interpret transition levels.
Journal ArticleDOI

Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes

TL;DR: It is demonstrated that the epitaxial growth of GaN/(Al,Ga)N on tetragonal LiAlO2 in a non-polar direction allows the fabrication of structures free of electrostatic fields, resulting in an improved quantum efficiency, which is expected to pave the way towards highly efficient white LEDs.
Journal ArticleDOI

Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect

TL;DR: In this article, the authors present theory and extended experimental results for the large shift in optical absorption in GaAs-AlGaAs quantum well structures with electric field perpendicular to the layers.
Journal ArticleDOI

Nitride-based semiconductors for blue and green light-emitting devices

Fernando Ponce, +1 more
- 27 Mar 1997 - 
TL;DR: In this article, the group III elements of the semiconducting nitrides have been used for the fabrication of high-efficiency solid-state devices that emit green and blue light.
Related Papers (5)