scispace - formally typeset
Journal ArticleDOI

Recent Advances in Electrochemical CO2-to-CO Conversion on Heterogeneous Catalysts

Reads0
Chats0
TLDR
Recent advances in heterogeneous catalysts for selective CO evolution from electrochemical reduction of CO2 are described, and recently emerged novel materials including transition metal single-atom catalysts, which present significantly different catalytic behaviors compared to their bulk counterparts and thus open up many unexpected opportunities.
Abstract
Electrochemical reduction of carbon dioxide (CO2 ) to fuels and chemicals provides a promising solution for renewable energy storage and utilization. Among the many possible reaction pathways, CO2 conversion to carbon monoxide (CO) is the first step in the synthesis of more complex carbon-based fuels and feedstocks, and holds great significance for the chemical industry. Herein, recent advances in heterogeneous catalysts for selective CO evolution from electrochemical reduction of CO2 are described. With Au catalysts as a paradigm, principles for catalyst design including size, morphology, and grain boundary densities tuning, surface modifications, as well as metal-support interaction are comprehensively summarized, which shed light on the development of other transition metal catalysts targeting efficient CO2 -to-CO conversion. In addition, recently emerged novel materials including transition metal single-atom catalysts, which present significantly different catalytic behaviors compared to their bulk counterparts and thus open up many unexpected opportunities, are summarized. Furthermore, the technical aspects with respect to large-scale production of CO are presented, focusing on the full-cell design and implementation. Finally, short comments related to the future direction of real-word CO2 electrolysis for CO supply are provided in terms of catalyst optimization and technical breakthrough.

read more

Citations
More filters
Journal ArticleDOI

Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO.

TL;DR: Electrochemical data suggest that the Fe3+ sites derive their superior activity from faster CO2 adsorption and weaker CO absorption than that of conventional Fe2+ sites, whereas non–precious metal catalysts have shown low to modest activity.
Journal ArticleDOI

Isolated Diatomic Ni-Fe Metal-Nitrogen Sites for Synergistic Electroreduction of CO2.

TL;DR: Density functional theory studies reveal that the neighboring Ni-Fe centers not only function in synergy to decrease the reaction barrier for the formation of COOH* and desorption of CO, but also undergo distinct structural evolution into a CO-adsorbed moiety upon CO2 uptake.
Journal ArticleDOI

Large-Scale and Highly Selective CO2 Electrocatalytic Reduction on Nickel Single-Atom Catalyst

TL;DR: In this paper, a facile synthesis of earth-abundant Ni single-atom catalysts on commercial carbon black was further employed in a gas-phase electrocatalytic reactor under ambient conditions.
Journal ArticleDOI

Single-atom catalysis in advanced oxidation processes for environmental remediation.

TL;DR: In this paper, the authors highlight the synthetic strategies, characterisation, and computation of carbon-based SACs, and for the first time, showcase their innovative applications in advanced oxidation processes.
References
More filters
Journal ArticleDOI

Opportunities and challenges for a sustainable energy future

TL;DR: This Perspective provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.
Journal ArticleDOI

Powering the planet: Chemical challenges in solar energy utilization

TL;DR: Solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year, and if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user.
Journal ArticleDOI

Alternative energy technologies

TL;DR: Fossil fuels currently supply most of the world's energy needs, and however unacceptable their long-term consequences, the supplies are likely to remain adequate for the next few generations.
Journal ArticleDOI

The path towards sustainable energy

TL;DR: Research in materials science is contributing to progress towards a sustainable future based on clean energy generation, transmission and distribution, the storage of electrical and chemical energy, energy efficiency, and better energy management systems.
Journal ArticleDOI

New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces

TL;DR: In this paper, the authors report new insights into the electrochemical reduction of CO2 on a metallic copper surface, enabled by the development of an experimental methodology with unprecedented sensitivity for the identification and quantification of CO 2 electroreduction products.
Related Papers (5)