scispace - formally typeset
Open AccessJournal ArticleDOI

RIP3: a molecular switch for necrosis and inflammation.

TLDR
The current understanding of the mechanisms that drive RIP3-dependent necrosis and its role in different inflammatory diseases is reviewed.
Abstract
The receptor-interacting protein kinase 3 (RIP3/RIPK3) has emerged as a critical regulator of programmed necrosis/ necroptosis, an inflammatory form of cell death with important functions in pathogen-induced and sterile inflammation. RIP3 activation is tightly regulated by phosphorylation, ubiquitination, and caspase-mediated cleavage. These post-translational modifications coordinately regulate the assembly of a macromolecular signaling complex termed the necrosome. Recently, several reports indicate that RIP3 can promote inflammation independent of its pronecrotic activity. Here, we review our current understanding of the mechanisms that drive RIP3-dependent necrosis and its role in different inflammatory diseases.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Regulated necrosis: the expanding network of non-apoptotic cell death pathways

TL;DR: Elucidating how these pathways of regulated necrosis are interconnected at the molecular level should enable this process to be therapeutically targeted.
Journal ArticleDOI

Mixed Lineage Kinase Domain-like Protein MLKL Causes Necrotic Membrane Disruption upon Phosphorylation by RIP3

TL;DR: The development of a monoclonal antibody that specifically recognizes phosphorylated MLKL in cells dying of this pathway and in human liver biopsy samples from patients suffering from drug-induced liver injury is reported.
Journal ArticleDOI

Glutaminolysis and Transferrin Regulate Ferroptosis.

TL;DR: Inhibition of glutaminolysis, the essential component of ferroptosis, can reduce heart injury triggered by ischemia/reperfusion, suggesting a potential therapeutic approach for treating related diseases.
Journal ArticleDOI

Ferroptosis is an autophagic cell death process

TL;DR: It is reported that inhibition of ferritinophagy by blockage of autophagy or knockdown of NCOA4 abrogated the accumulation of ferroptosis-associated cellular labile iron and reactive oxygen species, as well as eventual ferroPTotic cell death.
Journal Article

Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria (111.33)

TL;DR: It is demonstrated that activation of caspase-1 clears intracellular bacteria in vivo independently of IL-1β and IL-18 and establishes pyroptosis as an efficient mechanism of bacterial clearance by the innate immune system.
References
More filters
Journal ArticleDOI

FADD: Essential for Embryo Development and Signaling from Some, But Not All, Inducers of Apoptosis

TL;DR: CD95, tumor necrosis factor receptor type 1 (TNFR-1), and death receptor 3 (DR3) did not induce apoptosis in FADD-deficient embryonic fibroblasts, whereas DR4, oncogenes E1A and c-myc, and chemotherapeutic agent adriamycin did.
Journal Article

Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria (111.33)

TL;DR: It is demonstrated that activation of caspase-1 clears intracellular bacteria in vivo independently of IL-1β and IL-18 and establishes pyroptosis as an efficient mechanism of bacterial clearance by the innate immune system.
Journal ArticleDOI

The Mitochondrial Phosphatase PGAM5 Functions at the Convergence Point of Multiple Necrotic Death Pathways

TL;DR: PGAM5 was defined as the convergent point for multiple necrosis pathways after it was identified that upon necrosis induction, PGAM5S recruited the mitochondrial fission factor Drp1 and activated its GTPase activity by dephosphorylating the serine 637 site of Drp 1.
Journal ArticleDOI

RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation.

TL;DR: This work investigated the 'downstream' signaling events that regulate TLR3-dependent Trif-induced NF-κB activation and found that RIP1 mediates Trif -RIP1–inducedNF-κBs activation.
Related Papers (5)