scispace - formally typeset
Open AccessJournal ArticleDOI

Semimetallic Two-Dimensional Boron Allotrope with Massless Dirac Fermions

TLDR
In this paper, a novel 2D boron structure with nonzero thickness was proposed based on an ab initio evolutionary structure search, which is considerably lower in energy than the recently proposed $\ensuremath{\alpha}$-sheet structure and its analogues.
Abstract
It has been widely accepted that planar boron structures, composed of triangular and hexagonal motifs are the most stable two-dimensional (2D) phases and likely precursors for boron nanostructures. Here we predict, based on an ab initio evolutionary structure search, a novel 2D boron structure with nonzero thickness, which is considerably, by $50\text{ }\text{ }\mathrm{meV}/\mathrm{atom}$, lower in energy than the recently proposed $\ensuremath{\alpha}$-sheet structure and its analogues. In particular, this phase is identified for the first time to have a distorted Dirac cone, after graphene and silicene the third elemental material with massless Dirac fermions. The buckling and coupling between the two sublattices not only enhance the energetic stability, but also are the key factors for the emergence of the distorted Dirac cone.

read more

Citations
More filters
Journal ArticleDOI

Experimental realization of two-dimensional boron sheets

TL;DR: Experimental work is presented showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate and density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations.
Journal ArticleDOI

Rise of silicene: A competitive 2D material

TL;DR: In this paper, a comprehensive review of all the important theoretical and experimental advances on silicene to date, from the basic theory of intrinsic properties, experimental synthesis and characterization, modulation of physical properties by modifications, and finally to device explorations is presented.
Journal ArticleDOI

Synthesis and chemistry of elemental 2D materials

TL;DR: A review of recent progress and current challenges in the synthesis and stabilization of elemental 2D materials can be found in this article, with a focus on topical species with peculiar properties and properties.
Journal ArticleDOI

Phagraphene: A Low-Energy Graphene Allotrope Composed of 5-6-7 Carbon Rings with Distorted Dirac Cones.

TL;DR: The electronic structure of phagraphene has distorted Dirac cones, which are lower in energy than most of the predicted 2D carbon allotropes due to its sp(2)-binding features and density of atomic packing comparable to graphene.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Journal ArticleDOI

Projector augmented-wave method

TL;DR: An approach for electronic structure calculations is described that generalizes both the pseudopotential method and the linear augmented-plane-wave (LAPW) method in a natural way and can be used to treat first-row and transition-metal elements with affordable effort and provides access to the full wave function.
Journal ArticleDOI

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set

TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.
Journal ArticleDOI

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials

TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Related Papers (5)