scispace - formally typeset
Open AccessJournal ArticleDOI

The cytoplasm of living cells behaves as a poroelastic material

TLDR
The poroelastic model is directly validated to explain cellular rheology at physiologically relevant timescales using microindentation tests in conjunction with mechanical, chemical and genetic treatments and shows that water redistribution through the solid phase of the cytoplasm (cytoskeleton and macromolecular crowders) plays a fundamental role in setting cellularRheology.
Abstract
The cytoplasm is the largest part of the cell by volume and hence its rheology sets the rate at which cellular shape changes can occur. Recent experimental evidence suggests that cytoplasmic rheology can be described by a poroelastic model, in which the cytoplasm is treated as a biphasic material consisting of a porous elastic solid meshwork (cytoskeleton, organelles, macromolecules) bathed in an interstitial fluid (cytosol). In this picture, the rate of cellular deformation is limited by the rate at which intracellular water can redistribute within the cytoplasm. However, direct supporting evidence for the model is lacking. Here we directly validate the poroelastic model to explain cellular rheology at physiologically relevant timescales using microindentation tests in conjunction with mechanical, chemical and genetic treatments. Our results show that water redistribution through the solid phase of the cytoplasm (cytoskeleton and macromolecular crowders) plays a fundamental role in setting cellular rheology.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Effects of extracellular matrix viscoelasticity on cellular behaviour.

TL;DR: The role of viscoelasticity of tissues and extracellular matrices in cell–matrix interactions and mechanotransduction and the potential utility of vis coelastic biomaterials in regenerative medicine are explored.
Journal ArticleDOI

Atomic force microscopy-based mechanobiology

TL;DR: The potential of combining AFM with complementary techniques, including optical microscopy and spectroscopy of mechanosensitive fluorescent constructs, super-resolution microscopy, the patch clamp technique and the use of microstructured and fluidic devices to characterize the 3D distribution of mechanical responses within biological systems and to track their morphology and functional state as discussed by the authors.
Journal ArticleDOI

Quantifying forces in cell biology

TL;DR: As mechanics is increasingly revealed to play a fundamental role in cell function it is envisage that tools to quantify physical forces may soon become widely applied in life-sciences laboratories.
Journal ArticleDOI

Cortical contractility triggers a stochastic switch to fast amoeboid cell motility.

TL;DR: 3D amoeboid cell migration is central to many developmental and disease-related processes such as cancer metastasis and it is shown that rearward cortical flows drive stable-bleb cell migration in various adhesive and non-adhesive environments, unraveling a highly versatile amoEBoid migration phenotype.
References
More filters
Journal ArticleDOI

General Theory of Three‐Dimensional Consolidation

TL;DR: In this article, the number of physical constants necessary to determine the properties of the soil is derived along with the general equations for the prediction of settlements and stresses in three-dimensional problems.
Journal ArticleDOI

Cellular Motility Driven by Assembly and Disassembly of Actin Filaments

TL;DR: A core set of proteins including actin, Arp2/3 complex, profilin, capping protein, and ADF/cofilin can reconstitute the process in vitro, and mathematical models of the constituent reactions predict the rate of motion.
Journal ArticleDOI

Mobility measurement by analysis of fluorescence photobleaching recovery kinetics.

TL;DR: The theoretical basis and some practical guidelines for simple, rigorous analysis of FPR experiments are presented and some model experiments on aqueous solutions of rhodamine 6G are described.
Related Papers (5)