scispace - formally typeset
Open AccessJournal ArticleDOI

The extracellular matrix: A dynamic niche in cancer progression

Reads0
Chats0
TLDR
The extracellular matrix (ECM), a complex network of macromolecules with distinctive physical, biochemical, and biomechanical properties, is commonly deregulated and becomes disorganized in diseases such as cancer.
Abstract
The local microenvironment, or niche, of a cancer cell plays important roles in cancer development. A major component of the niche is the extracellular matrix (ECM), a complex network of macromolecules with distinctive physical, biochemical, and biomechanical properties. Although tightly controlled during embryonic development and organ homeostasis, the ECM is commonly deregulated and becomes disorganized in diseases such as cancer. Abnormal ECM affects cancer progression by directly promoting cellular transformation and metastasis. Importantly, however, ECM anomalies also deregulate behavior of stromal cells, facilitate tumor-associated angiogenesis and inflammation, and thus lead to generation of a tumorigenic microenvironment. Understanding how ECM composition and topography are maintained and how their deregulation influences cancer progression may help develop new therapeutic interventions by targeting the tumor niche.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Remodelling the extracellular matrix in development and disease.

TL;DR: The extracellular matrix is crucial for regulating the morphogenesis of the intestine and lungs, as well as of the mammary and submandibular glands, and its regulation contributes to several pathological conditions, such as fibrosis and invasive cancer.
Journal ArticleDOI

Extracellular matrix structure.

TL;DR: The complex ECM structure is emphasized as to provide a better understanding of its dynamic structural and functional multipotency and the implication of the various families of ECM macromolecules in health and disease is presented.
Journal ArticleDOI

Preterm labor: One syndrome, many causes

TL;DR: The current understanding of the mechanisms of disease implicated in preterm labor are summarized and advances relevant to intra-amniotic infection, decidual senescence, and breakdown of maternal-fetal tolerance are reviewed.
Journal ArticleDOI

The extracellular matrix modulates the hallmarks of cancer

TL;DR: It is suggested that the success of cancer prevention and therapy programs requires an intimate understanding of the reciprocal feedback between the evolving extracellular matrix, the tumor cells and its cancer‐associated cellular stroma.
References
More filters
Journal ArticleDOI

Hallmarks of cancer: the next generation.

TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.
Journal ArticleDOI

The hallmarks of cancer.

TL;DR: This work has been supported by the Department of the Army and the National Institutes of Health, and the author acknowledges the support and encouragement of the National Cancer Institute.
Journal ArticleDOI

Inflammation and cancer

TL;DR: It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration.
Journal ArticleDOI

Matrix elasticity directs stem cell lineage specification.

TL;DR: Naive mesenchymal stem cells are shown here to specify lineage and commit to phenotypes with extreme sensitivity to tissue-level elasticity, consistent with the elasticity-insensitive commitment of differentiated cell types.
Journal ArticleDOI

Human mesenchymal stem cells modulate allogeneic immune cell responses

Sudeepta Aggarwal, +1 more
- 15 Feb 2005 - 
TL;DR: Insight is offered into the interactions between allogeneic MSCs and immune cells and mechanisms likely involved with the in vivo MSC-mediated induction of tolerance that could be therapeutic for reduction of GVHD, rejection, and modulation of inflammation.
Related Papers (5)