scispace - formally typeset
Open AccessJournal ArticleDOI

The "quad-partite" synapse: microglia-synapse interactions in the developing and mature CNS.

Reads0
Chats0
TLDR
Current knowledge sheds new light on the critical functions of these mysterious cells in synapse development and function in the healthy CNS, but has also incited several new and interesting questions that remain to be explored.
Abstract
Microglia are the resident immune cells and phagocytes of our central nervous system (CNS). While most work has focused on the rapid and robust responses of microglia during CNS disease and injury, emerging evidence suggests that these mysterious cells have important roles at CNS synapses in the healthy, intact CNS. Groundbreaking live imaging studies in the anesthetized, adult mouse demonstrated that microglia processes dynamically survey their environment and interact with other brain cells including neurons and astrocytes. More recent imaging studies have revealed that microglia dynamically interact with synapses where they appear to serve as “synaptic sensors,” responding to changes in neural activity and neurotransmitter release. In the following review, we discuss the most recent work demonstrating that microglia play active roles at developing and mature synapses. We first discuss the important imaging studies that have led us to better understand the physical relationship between microglia and synapses in the healthy brain. Following this discussion, we review known molecular mechanisms and functional consequences of microglia-synapse interactions in the developing and mature CNS. Our current knowledge sheds new light on the critical functions of these mysterious cells in synapse development and function in the healthy CNS, but has also incited several new and interesting questions that remain to be explored. We discuss these open questions, and how the most recent findings in the healthy CNS may be related to pathologies associated with abnormal and/or loss of neural circuits.

read more

Citations
More filters
Journal ArticleDOI

Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner.

TL;DR: It is shown that microglia engulf presynaptic inputs during peak retinogeniculate pruning and that engulfment is dependent upon neural activity and themicroglia-specific phagocytic signaling pathway, complement receptor 3(CR3)/C3.
Journal ArticleDOI

Microglia emerge as central players in brain disease.

TL;DR: Recent developments in the rapidly expanding understanding of the function, as well as the dysfunction, of microglia in disorders of the CNS are focused on.
Journal ArticleDOI

Glia–neuron interactions in the mammalian retina

TL;DR: This review summarizes the main functional relationships between retinal glial cells and neurons, presenting a general picture of the retina recently modified based on experimental observations.
References
More filters
Journal ArticleDOI

Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo

TL;DR: Using in vivo two-photon imaging in neocortex, it is found that microglial cells are highly active in their presumed resting state, continually surveying their microenvironment with extremely motile processes and protrusions.
Journal ArticleDOI

Microglia: a sensor for pathological events in the CNS

TL;DR: An understanding of intercellular signalling pathways for microglia proliferation and activation could form a rational basis for targeted intervention on glial reactions to injuries in the CNS.
Journal ArticleDOI

ATP mediates rapid microglial response to local brain injury in vivo

TL;DR: Extracellular ATP regulates microglial branch dynamics in the intact brain, and its release from the damaged tissue and surrounding astrocytes mediates a rapid microglia response towards injury.
Journal ArticleDOI

Microglia: active sensor and versatile effector cells in the normal and pathologic brain

TL;DR: This review focuses on several key observations that illustrate the multi-faceted activities of microglia in the normal and pathologic brain.
Journal ArticleDOI

Synaptic Pruning by Microglia Is Necessary for Normal Brain Development

TL;DR: It is shown that microglia actively engulf synaptic material and play a major role in synaptic pruning during postnatal development in mice and this work suggests that deficits in microglian function may contribute to synaptic abnormalities seen in some neurodevelopmental disorders.
Related Papers (5)