scispace - formally typeset
Journal ArticleDOI

Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles

Kyong-Soo Hong, +2 more
- 17 Jan 2006 - 
- Vol. 88, Iss: 3, pp 031901
Reads0
Chats0
TLDR
In this article, the effect of the clustering of nanoparticles on the thermal conductivity of nanofluids was investigated and it was found from the variations of the nan-cluster size and thermal conductivities that the reduction of the thermalconductivity was directly related to the agglomeration of nanarticles.
Abstract
Nanofluids have been attractive for the last few years with the enormous potential to improve the efficiency of heat transfer fluids. This work focuses on the effect of the clustering of nanoparticles on the thermal conductivity of nanofluids. Large enhancement of the thermal conductivity is observed in Fe nanofluids sonicated with high powered pulses. The average size of the nanoclusters and thermal conductivity of sonicated nanofluids are measured as time passes after the sonication stopped. It is found from the variations of the nanocluster size and thermal conductivity that the reduction of the thermal conductivity of nanofluids is directly related to the agglomeration of nanoparticles. The thermal conductivity of Fe nanofluids increases nonlinearly as the volume fraction of nanoparticles increases. The nonlinearity is attributed to the rapid clustering of nanoparticles in condensed nanofluids. The thermal conductivities of Fe nanofluids with the three lowest concentrations are fitted to a linear function. The Fe nanofluids show a more rapid increase of the thermal conductivity than Cu nanofluids as the volume fraction of the nanoparticles increases.

read more

Citations
More filters
Journal ArticleDOI

Heat transfer characteristics of nanofluids: a review

TL;DR: A review on fluid flow and heat transfer characteristics of nanofluids in forced and free convection flows is presented in this article, where the authors identify opportunities for future research.
Journal ArticleDOI

Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements

TL;DR: In this article, the authors provide a detailed literature review and an assessment of results of the research and development work forming the current status of nanofluid technology for heat transfer applications.
Journal ArticleDOI

A review of nanofluid stability properties and characterization in stationary conditions

TL;DR: In this article, the stability of nanofluids is discussed as it has a major role in heat transfer enhancement for further possible applications, and general stabilization methods as well as various types of instruments for stability inspection.
Journal ArticleDOI

A benchmark study on the thermal conductivity of nanofluids

Jacopo Buongiorno, +72 more
TL;DR: The International Nanofluid Property Benchmark Exercise (INPBE) as mentioned in this paper was held in 1998, where the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids" was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady state methods, and optical methods.
Journal Article

A Benchmark Study on the Thermal Conductivity of Nanofluids

TL;DR: The International Nanofluid Property Benchmark Exercise (INPBE) as discussed by the authors was held in 1998, where the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids" was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady state methods, and optical methods.
References
More filters
Journal ArticleDOI

Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles

TL;DR: In this paper, it was shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure or pure glycol or even polyethylene glycol containing the same volume fraction of dispersed oxide nanoparticles.
Journal ArticleDOI

Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles

TL;DR: In this paper, a transient hot-wire method was used to measure the thermal conductivity of a small amount of nanoparticles and the experimental results showed that these nanoparticles have substantially higher thermal conductivities than the same liquids without nanoparticles.
Journal ArticleDOI

Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)

TL;DR: In this paper, the authors explore four possible explanations for the anomalous thermal conductivity of nanofluids: Brownian motion of the particles, molecular-level layering of the liquid at the liquid/particle interface, the nature of heat transport in the nanoparticles, and the effects of nanoparticle clustering.
Book

Laser Light Scattering

Benjamin Chu
Journal ArticleDOI

Study of the enhanced thermal conductivity of Fe nanofluids

TL;DR: In this article, the authors show that the suspension of highly thermally conductive materials is not always effective to improve thermal transport property of nanofluids, and they also find that suspension of high-powered pulses is also not always beneficial.
Related Papers (5)